Dissertation Abstracts International
Author:
Publisher:
Published: 2004
Total Pages: 692
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author:
Publisher:
Published: 2004
Total Pages: 692
ISBN-13:
DOWNLOAD EBOOKAuthor: Fang Lin Luo
Publisher: CRC Press
Published: 2010-01-19
Total Pages: 746
ISBN-13: 1439882614
DOWNLOAD EBOOKThe ever-growing shortage of energy resources continues to make the development of renewable energy sources, energy-saving techniques, and power supply quality an increasingly critical issue. To meet the need to develop renewable and energy-saving power sources, green energy source systems require large numbers of converters. New converters, such as the Vienna rectifier and z-source inverters, are designed to improve the power factor and increase power efficiency. Power Electronics: Advanced Conversion Technologies gives those working in power electronics useful and concise information regarding advanced converters. Offering methods for determining accurate solutions in the design of converters for industrial applications, this book details more than 200 topologies concerning advanced converters that the authors themselves have developed. The text analyzes new converter circuits that have not been widely examined, and it covers the rapid advances in the field, presenting ways to solve and correct the historical problems associated with them. The technology of DC/DC conversion is making rapid progress. It is estimated that more than 600 topologies of DC/DC converters exist, and new ones are being created every year. The authors completed the mammoth task of systematically sorting and categorizing the DC/DC converters into six groups and have made major contributions to voltage-lift and super-lift techniques. Detailing the authors’ work, this book investigates topics including traditional AC/DC diode rectifiers controlled AC/DC rectifiers power factor correction unity power factor techniques pulse-width-modulated DC/AC inverters multilevel DC/AC inverters traditional and improved AC/AC converters converters used in renewable energy source systems With many examples and homework problems to help the reader thoroughly understand design and application of power electronics, this volume can be used both as a textbook for university students studying power electronics and a reference book for practicing engineers.
Author: Ibrahim Dincer
Publisher: Academic Press
Published: 2014-07-15
Total Pages: 657
ISBN-13: 0123838614
DOWNLOAD EBOOKAdvanced Power Generation Systems examines the full range of advanced multiple output thermodynamic cycles that can enable more sustainable and efficient power production from traditional methods, as well as driving the significant gains available from renewable sources. These advanced cycles can harness the by-products of one power generation effort, such as electricity production, to simultaneously create additional energy outputs, such as heat or refrigeration. Gas turbine-based, and industrial waste heat recovery-based combined, cogeneration, and trigeneration cycles are considered in depth, along with Syngas combustion engines, hybrid SOFC/gas turbine engines, and other thermodynamically efficient and environmentally conscious generation technologies. The uses of solar power, biomass, hydrogen, and fuel cells in advanced power generation are considered, within both hybrid and dedicated systems. The detailed energy and exergy analysis of each type of system provided by globally recognized author Dr. Ibrahim Dincer will inform effective and efficient design choices, while emphasizing the pivotal role of new methodologies and models for performance assessment of existing systems. This unique resource gathers information from thermodynamics, fluid mechanics, heat transfer, and energy system design to provide a single-source guide to solving practical power engineering problems. - The only complete source of info on the whole array of multiple output thermodynamic cycles, covering all the design options for environmentally-conscious combined production of electric power, heat, and refrigeration - Offers crucial instruction on realizing more efficiency in traditional power generation systems, and on implementing renewable technologies, including solar, hydrogen, fuel cells, and biomass - Each cycle description clarified through schematic diagrams, and linked to sustainable development scenarios through detailed energy, exergy, and efficiency analyses - Case studies and examples demonstrate how novel systems and performance assessment methods function in practice
Author: Fouad Giri
Publisher: John Wiley & Sons
Published: 2013-03-25
Total Pages: 604
ISBN-13: 1118574249
DOWNLOAD EBOOKThe complexity of AC motor control lies in the multivariable and nonlinear nature of AC machine dynamics. Recent advancements in control theory now make it possible to deal with long-standing problems in AC motors control. This text expertly draws on these developments to apply a wide range of model-based control designmethods to a variety of AC motors. Contributions from over thirty top researchers explain how modern control design methods can be used to achieve tight speed regulation, optimal energetic efficiency, and operation reliability and safety, by considering online state variable estimation in the absence of mechanical sensors, power factor correction, machine flux optimization, fault detection and isolation, and fault tolerant control. Describing the complete control approach, both controller and observer designs are demonstrated using advanced nonlinear methods, stability and performance are analysed using powerful techniques, including implementation considerations using digital computing means. Other key features: • Covers the main types of AC motors including triphase, multiphase, and doubly fed induction motors, wound rotor, permanent magnet, and interior PM synchronous motors • Illustrates the usefulness of the advanced control methods via industrial applications including electric vehicles, high speed trains, steel mills, and more • Includes special focus on sensorless nonlinear observers, adaptive and robust nonlinear controllers, output-feedback controllers, fault detection and isolation algorithms, and fault tolerant controllers This comprehensive volume provides researchers and designers and R&D engineers with a single-source reference on AC motor system drives in the automotive and transportation industry. It will also appeal to advanced students in automatic control, electrical, power systems, mechanical engineering and robotics, as well as mechatronic, process, and applied control system engineers.
Author: Dr. Sumant G. Kadwane
Publisher: Academic Guru Publishing House
Published: 2024-07-23
Total Pages: 252
ISBN-13: 8197747709
DOWNLOAD EBOOKThe field of power electronics is integral to modern technological advancement, covering diverse applications ranging from energy conversion to electronic control systems. “Power Electronics (Circuits, Devices and Application)” provides a comprehensive overview of this dynamic discipline, beginning with a comprehensive introduction to power electronics. This introductory chapter lays the groundwork by exploring the importance and wide-ranging applications of power electronics in contemporary technology, tracking its evolution, and highlighting emerging trends and future challenges. This book goes deep into the heart of power electronics with detailed discussions on power semiconductor devices, including diodes, rectifiers, MOSFETs, IGBTs, and the latest innovations in semiconductor technology. Subsequent chapters explore the design and operation of fundamental power electronic circuits such as AC-DC converters, DC-DC converters, and inverters, as well as advanced topics such as resonant converters and soft-switching techniques. Control techniques are critical to effective power electronics, and the book covers essential methods such as pulse width modulation, current and voltage control, and digital control techniques. The book also addresses critical aspects of power supplies and converters, including switched-mode power supplies, uninterruptible power supplies, and power factor correction techniques. The application chapters explore the role of power electronics in renewable energy systems, electric vehicles, industrial motor drives, and power quality improvement. Thermal management and reliability are discussed in detail, providing insights into heat transfer, cooling strategies, and reliability improvement techniques. Advanced topics include wide-bandgap semiconductor devices, power electronic integration, and emerging trends in research. The book also includes an in-depth exploration of design and simulation tools, with an emphasis on CAD tools, simulation software, and practical design examples. Concluding with a visionary perspective, the book examines future prospects, innovations in smart grid technologies, and the role of power electronics in IoT and smart cities, addressing the challenges and opportunities that lie ahead. This comprehensive resource is designed to equip readers with a deep understanding of power electronics and prepare them for future advancements in the field.
Author: Akash Kumar Bhoi
Publisher: Springer Nature
Published: 2020-05-15
Total Pages: 847
ISBN-13: 9811542465
DOWNLOAD EBOOKThis book presents ongoing research activities of currently available renewable energy technologies and the approaches towards clean technology for enabling a socio-economic model for the present and future generations to live in a clean and healthy environment. The book provides chapter wise implementation of research works in the area of green energy technologies with proper methods used with solution strategies and energy efficiency approaches by combining theory and practical applications. Readers are introduced to practical problems of green computation and hybrid resources optimization with solution based approaches from the current research outcomes. The book will be of use to researchers, professionals, and policy-makers alike.
Author: Fang Lin Luo
Publisher: CRC Press
Published: 2017-12-19
Total Pages: 883
ISBN-13: 1351832603
DOWNLOAD EBOOKEnergy conversion techniques are key in power electronics and even more so in renewable energy source systems, which require a large number of converters. Renewable Energy Systems: Advanced Conversion Technologies and Applications describes advanced conversion technologies and provides design examples of converters and inverters for renewable energy systems—including wind turbine and solar panel energy systems. Learn Cutting-Edge Techniques for Converters and Inverters Setting the scene, the book begins with a review of the basics of astronomy and Earth physics. It then systematically introduces more than 200 topologies of advanced converters originally developed by the authors, including 150 updated circuits on modern conversion technologies. It also discusses recently published topologies and thoroughly analyzes new converter circuits. Novel approaches include split-capacitor and split-inductor techniques that can be applied in super-lift and other converters. Resolve Historic Problems in Conversion Technologies Along with offering many cutting-edge techniques, the authors resolve some historic problems, such as the accurate determination of the conduction angle of single-phase rectifiers and power factor correction. They also describe a new series—laddered multilevel inverters—that uses few devices to produce more levels, overcoming the drawbacks of the pulse-width-modulation (PWM) inverter and providing great scope for industrial applications. Tap the Knowledge of Pioneers in the Field This book is written by pioneers in advanced conversion technology who have created a large number of converters, including the world-renowned DC/DC Luo-converters and super-lift Luo-converters. Featuring numerous examples and diagrams, it guides readers in designing advanced converters for use in renewable energy systems.
Author: Edward C. Shaffer
Publisher: Materials Research Forum LLC
Published: 2018-09-20
Total Pages: 728
ISBN-13: 1945291796
DOWNLOAD EBOOKThis compendium reports fundamental science and engineering advances of the US Army Research Labratory (ARL) within the area of Energy and Power technologies. Although, in general, ARL's Materials Research encompasses a broad range of materials technologies (e.g.: Photonics, Electronics, Biological and Bio-inspired Materials, Structural Materials, High Strain and Ballistic Materials, and Manufacturing Science), this publication specifically addresses selected energy and power material related work at ARL. While this work includes electrochemical energy storage (batteries and capacitors) and electrochemical energy conversion (fuel cells, photoelectrochemistry, and photochemistry), special emphasis is given on electrochemical energy storage: • Micro Electro-Mechanical Systems (MEMS): Power density, efficiency, and robustness of motors, generators, and actuators while also reducing their life cycle costs. • Energy Storage: Electrical and electrochemical energy storage devices to decrease device size, weight, and cost as well as increase their capabilities in extreme temperatures and operating conditions. • Power Control and Distribution: Tactical, deployable power systems using conventional fuels, alternative fuels, and energy harvested from renewable/ambient sources. • Power Generation/Energy Conversion: Smart energy networks for platforms, forward operating bases, and facilities using modeling and simulation tools as well as new, greater capability and efficiency components. • Thermal Transport and Control: Heat and higher power density systems, advanced components, system modeling, and adaptive or hybrid-cycle technologies. Keywords: Electrochemical Energy Storage, Batteries, Capacitors, Electrochemical Energy Conversion, Fuel Cells, Photoelectrochemistry, Photochemistry, High Voltage Electrolytes, Li-ion Batteries, Li-ion Chemistry, Lithium–Sulphur Batteries, Nuclear Metastables, Pyroelectric Energy Conversion, Charged Quantum Dots, High-Efficiency Photovoltaics, IR Sensing, GaN Power Schottky Diodes, Threshold-Voltage Instability, Reliability Testing, SiC MOSFETs, Power Electronics Packaging, High Voltage 4H-SiC GTOs, Silicon Carbide, Avalanche Breakdown Diode, SiC PiN Diodes, Thyristor Protection, Compact DC-DC Battery Chargers
Author: Wade H. Shafer
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 426
ISBN-13: 1461519691
DOWNLOAD EBOOKMasters Theses in the Pure and Applied Sciences was first conceived, published, and disseminated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS)* at Purdue University in 1957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dis semination phases of the activity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thought that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this joint undertaking we had concluded that it was in the interest of all concerned if the printing and distribution of the volumes were handled by an international publishing house to assure improved service and broader dissemination. Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Corporation of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 38 (thesis year 1993) a total of 13,787 thesis titles from 22 Canadian and 164 United States universities. We are sure that this broader base for these titles reported will greatly enhance the value of this impor tant annual reference work. While Volume 38 reports theses submitted in 1993, on occasion, certain uni versities do report theses submitted in previous years but not reported at the time.
Author:
Publisher:
Published: 1981
Total Pages: 306
ISBN-13:
DOWNLOAD EBOOK