This book covers the most recent advances in the science and technology of nanostructured materials for lithium-ion application. With contributions from renowned scientists and technologists, the chapters discuss state-of-the-art research on nanostructured anode and cathode materials, some already used in commercial batteries and others still in development. They include nanostructured anode materials based on Si, Ge, Sn, and other metals and metal oxides together with cathode materials of olivine, the hexagonal and spinel crystal structures.
Advanced Nanomaterials for Aerospace Applications has been developed for a community interested in space science and nanotechnology. Scientists and engineers from several NASA field centers and the Jet Propulsion Laboratory, University of Puerto Rico, The Pennsylvania State University, and INFN-Laboratori Nazionali di Frascati, Italy, have joined efforts to discuss the applications of nanomaterials in sensors, atmosphere revitalization in habitable space platforms, life support systems, regenerative fuel cells, lithium-ion batteries, robust lightweight materials, nanoelectronics, and electromagnetic shielding. The book concludes with chapters that discuss bringing NASA-relevant nanotechnology into the classroom and the future directions in nanotechnology research and development at NASA.
Lithium-Ion Batteries features an in-depth description of different lithium-ion applications, including important features such as safety and reliability. This title acquaints readers with the numerous and often consumer-oriented applications of this widespread battery type. Lithium-Ion Batteries also explores the concepts of nanostructured materials, as well as the importance of battery management systems. This handbook is an invaluable resource for electrochemical engineers and battery and fuel cell experts everywhere, from research institutions and universities to a worldwide array of professional industries. - Contains all applications of consumer and industrial lithium-ion batteries, including reviews, in a single volume - Features contributions from the world's leading industry and research experts - Presents executive summaries of specific case studies - Covers information on basic research and application approaches
The use of nanomaterials in energy conversion and storage represents an opportunity to improve the performance, density and ease of transportation in renewable resources. This book looks at the most recent research on the topic, with particular focus on artificial photosynthesis and lithium-ion batteries as the most promising technologies to date. Research on the broad subject of energy conversion and storage calls for expertise from a wide range of backgrounds, from the most fundamental perspectives of the key catalytic processes at the molecular level to device scale engineering and optimization. Although the nature of the processes dictates that electrochemistry is a primary characterization tool, due attention is given to advanced techniques such as synchrotron studies in operando. These studies look at the gap between the performance of current technology and what is needed for the future, for example how to improve on the lithium-ion battery and to go beyond its capabilities.Suitable for students and practitioners in the chemical, electrochemical, and environmental sciences, Nanomaterials for Energy Conversion and Storage provides the information needed to find scalable, economically viable and safe solutions for sustainable energy.
This book provides an authoritative source of information on the use of nanomaterials to enhance the performance of existing electrochemical energy storage systems and the manners in which new such systems are being made possible. The book covers the state of the art of the design, preparation, and engineering of nanoscale functional materials as effective catalysts and as electrodes for electrochemical energy storage and mechanistic investigation of electrode reactions. It also provides perspectives and challenges for future research. A related book by the same editors is: Nanomaterials for Fuel Cell Catalysis.
Advanced Nanomaterials for Electrochemical Energy Conversion and Storage covers recent progress made in the rational design and engineering of functional nanomaterials for battery and supercapacitor applications in the forms of electrode materials, separators and electrolytes. The book includes detailed discussions of preparation methods, structural characterization, and manipulation techniques. Users will find a comprehensive illustration on the close correlation between material structures and properties, such as energy density, power density, cycle number and safety. - Provides an overview on the application of nanomaterials for energy storage and power systems - Includes a description of the fundamental aspects of the electrochemical process - Explores the new aspects of electrolyte and separator systems
Advanced Nanomaterials and Their Applications in Renewable Energy, Second Edition presents timely topics related to nanomaterials' feasible synthesis and characterization and their application in the energy fields. The book examines the broader aspects of energy use, including environmental effects of disposal of Li-ion and Na batteries and reviews the main energy sources of today and tomorrow, from fossil fuels to biomass, hydropower, storage power and solar energy. The monograph treats energy carriers globally in terms of energy storage, transmission, and distribution, addresses fuel cell-based solutions in transportation, industrial, and residential building, considers synergistic systems, and more. This new edition also offers updated statistical data and references; a new chapter on the synchronous x-ray based analysis techniques and electron tomography, and if waste disposal of energy materials pose a risk to the microorganism in water, and land use; expanding coverage of renewable energy from the first edition; with newer color illustrations. - Provides a comprehensive review of solar energy, fuel cells and gas storage from 2010 to the present - Reviews feasible synthesis and modern analytical techniques used in alternative energy - Explores examples of research in alternative energy, including current assessments of nanomaterials and safety - Contains a glossary of terms, units and historical benchmarks - Presents a useful guide that will bring readers up-to-speed on historical developments in alternative fuel cells
Filling the gap between publications for industrial developers and academic researchers on graphene synthesis and its applications, this book presents the essential aspects for the successful upscaling of graphene production. After an introduction to graphene, its synthesis and characterization, the text covers a wide variety of graphene composites and compounds. The larger part of the book discusses various applications where graphene has been successfully integrated into technologies, including uses in the energy sector, oil and gas industry, biomedical areas, sensors and coatings. Finally, the book concludes with a summary and a look at the future of graphene technology, including a market review. With its focus on applications, this is equally useful for both academic and industrial users.
Bionanotechnology: Emerging Applications of Bionanomaterials highlights a wide range of industrial applications using bionanotechnologies, with biomedical applications prominent amongst these, including drug delivery, tissue engineering, wound healing, medical implants, medical diagnostics and therapy. Other key areas include energy harvesting and storage, water/waste treatment, papermaking, textiles, construction industry, automotive, aerospace. This book is a valuable resource for all those seeking to gain a fundamental understanding of how bionanomaterials are used in a variety of industry sectors. Bionanomaterials are molecular materials composed partially or completely of biological molecules - such as proteins, enzymes, viruses, DNA and biopolymers - as well as metal, metal oxides, and carbon nanomaterials. Bionanomaterials have drawn much attention for their use in a wide range of industrial applications, including scaffolds, dental implants, drug delivery, dialysis, biobatteries, biofuel cells, air purification, and water treatment. - Assesses which bionanomaterial types are particularly suited to particular application areas - Shows how bionanomaterials are being used for biotechnology, biomedicine, energy production, energy storage, and environmental remediation applications - Highlights the challenges and interdisciplinary perspectives of bionanomaterials in science, biology, engineering, medicine, and technology, incorporating both fundamentals and applications
Advanced Nanomaterials for Point of Care Diagnosis and Therapy provides an overview of technological and emerging novel trends in how point-of-care diagnostic devices are designed, miniaturized built, and delivered at different healthcare set ups. It describes the significant technological advances in fundamental diagnostic components and recent advances in fully integrated devices designed for specific clinical use. The book covers state-of-the-art fabrication of advances materials with broad spectrum therapeutic applications. It includes drug delivery, biosensing, bioimaging and targeting, and outlines the development of inexpensive, effective and portable in vitro diagnostics tools for any purpose that can be used onsite. Sections also discuss drug delivery, biosensing, bioimaging and targeting and various metal, metal oxide and non-metal-based nanomaterials that are developed, surface modified, and are being explored for diagnosis, targeting, drug delivery, drug release and imaging. The book concludes with current needs and future challenges in the field. Outlines the needs and challenges of point-of-care diagnostics Describes the fundamentals of application of nanomaterials as interesting building blocks for biosensing Overviews the different detection methods offered by using nanomaterials Explains the advantages and drawbacks of nanomaterial-based sensing strategies Describes the opportunities offered by technology as a cost-efficient biosensing platform