This book sharpens your view of mathematical reasoning and its development at all grade levels. It reveals the various perspectives about the nature of reasoning. Also, it addresses the many issues and concerns involving mathematical reasoning - how learners reason in mathematics, how communication promotes reasoning, how teachers gather evidence of student reasoning, what curricular approaches can be profitably explored, what can be done to ensure success in developing reasoning, and more. This useful resource lets you dig deep into the topic and offers many ideas useful in your classroom.
How do your students determine whether a mathematical statement is true? Do they rely on a teacher, a textbook or various examples? How can you encourage them to connect examples, extend their ideas to new situations that they have not yet considered and reason more generally? How much do you know...and how much do you need to know? Helping your students develop a robust understanding of mathematical reasoning requires that you understand this mathematics deeply. But what does that mean? This book focuses on essential knowledge for teachers about mathematical reasoning. It is organised around one big idea, supported by multiple smaller, interconnected ideas - essential understandings.Taking you beyond a simple introduction to mathematical reasoning, the book will broaden and deepen your mathematical understanding of one of the most challenging topics for students and teachers. It will help you engage your students, anticipate their perplexities, avoid pitfalls and dispel misconceptions. You will also learn to develop appropriate tasks, techniques and tools for assessing students' understanding of the topic. Focus on the ideas that you need to understand thoroughly to teach confidently.
Because fluency practice is not a worksheet. Fluency in mathematics is more than adeptly using basic facts or implementing algorithms. Real fluency involves reasoning and creativity, and it varies by the situation at hand. Figuring Out Fluency in Mathematics Teaching and Learning offers educators the inspiration to develop a deeper understanding of procedural fluency, along with a plethora of pragmatic tools for shifting classrooms toward a fluency approach. In a friendly and accessible style, this hands-on guide empowers educators to support students in acquiring the repertoire of reasoning strategies necessary to becoming versatile and nimble mathematical thinkers. It includes: "Seven Significant Strategies" to teach to students as they work toward procedural fluency. Activities, fluency routines, and games that encourage learning the efficiency, flexibility, and accuracy essential to real fluency. Reflection questions, connections to mathematical standards, and techniques for assessing all components of fluency. Suggestions for engaging families in understanding and supporting fluency. Fluency is more than a toolbox of strategies to choose from; it’s also a matter of equity and access for all learners. Give your students the knowledge and power to become confident mathematical thinkers.
Make Rich Math Instruction Come to Life Online In an age when distance learning has become part of the "new normal," educators know that rich remote math teaching involves more than direct instruction, online videos, and endless practice problems on virtual worksheets. Using both personal experience and those of teachers in real K-12 online classrooms, distance learning mathematics veteran Theresa Wills translates all we know about research-based, equitable, rigorous face-to-face mathematics instruction into an online venue. This powerful guide equips math teachers to: Build students’ agency, identity, and strong math communities Promote mathematical thinking, collaboration, and discourse Incorporate rich mathematics tasks and assign meaningful homework and practice Facilitate engaging online math instruction using virtual manipulatives and other concrete learning tools Recognize and address equity and inclusion challenges associated with distance learning Assess mathematics learning from a distance With examples across the grades, links to tutorials and templates, and space to reflect and plan, Teaching Math at a Distance offers the support, clarity, and inspiration needed to guide teachers through teaching math remotely without sacrificing deep learning and academic growth.
Based on extensive research conducted by the authors, Reasoning and Sense Making in the Mathematics Classroom, Pre-K-Grade 2, is designed to help classroom teachers understand, monitor, and guide the development of students' reasoning and sense making about core ideas in elementary school mathematics. It describes and illustrates the nature of these skills using classroom vignettes and actual student work in conjunction with instructional tasks and learning progressions to show how reasoning and sense making develop and how instruction can support students in that development. Students who can make sense of mathematical ideas can apply those ideas in problem solving, even in unfamiliar situations, and can use them as a foundation for future learning. Without them, students are reduced to rote learning, often experiencing frustration and failure. But what do reasoning and sense making during learning and teaching look like? Each chapter of Reasoning and Sense Making in the Mathematics Classroom, Pre-K-Grade 2 explores a different topic that young children encounter in mathematics, demonstrating with actual student work and classroom dialogue how their mathematical knowledge and reasoning ability move through "levels of sophistication" or learning progressions: After opening with a discussion of the nature of reasoning and sense making and their critical importance in developing mathematical thinking, chapter 1 examines how young students attempt to make sense of the concepts of place value and length measurement. Chapter 2 focuses on how early childhood instruction can engage students in mathematical reasoning while helping them construct a rich sense of number and operations. Chapter 3 identifies core algebraic ideas and shows how students can engage with these ideas in ways that not only deepen their understanding of arithmetic but also lays the foundation for the future study of algebra. Children's reasoning and sense making as they decompose and compose geometric shapes--including reasoning about area--is examined in chapter 4. The use of learning progressions to understand students' reasoning and to guide their sense making with appropriate teaching is also discussed. Not just a theoretical discussion, the book also provides specific suggestions for related instructional activities for each topic. Supplementary online resources can be accessed at NCTM's More4U website. Reasoning and Sense Making in the Mathematics Classroom, Pre-K-Grade 2 will be a valuable and practical addition to your professional library.
"This book is a game changer! Strengths-Based Teaching and Learning in Mathematics: 5 Teaching Turnarounds for Grades K- 6 goes beyond simply providing information by sharing a pathway for changing practice. . . Focusing on our students’ strengths should be routine and can be lost in the day-to-day teaching demands. A teacher using these approaches can change the trajectory of students’ lives forever. All teachers need this resource! Connie S. Schrock Emporia State University National Council of Supervisors of Mathematics President, 2017-2019 NEW COVID RESOURCES ADDED: A Parent’s Toolkit to Strengths-Based Learning in Math is now available on the book’s companion website to support families engaged in math learning at home. This toolkit provides a variety of home-based activities and games for families to engage in together. Your game plan for unlocking mathematics by focusing on students’ strengths. We often evaluate student thinking and their work from a deficit point of view, particularly in mathematics, where many teachers have been taught that their role is to diagnose and eradicate students’ misconceptions. But what if instead of focusing on what students don’t know or haven’t mastered, we identify their mathematical strengths and build next instructional steps on students’ points of power? Beth McCord Kobett and Karen S. Karp answer this question and others by highlighting five key teaching turnarounds for improving students’ mathematics learning: identify teaching strengths, discover and leverage students’ strengths, design instruction from a strengths-based perspective, help students identify their points of power, and promote strengths in the school community and at home. Each chapter provides opportunities to stop and consider current practice, reflect, and transfer practice while also sharing · Downloadable resources, activities, and tools · Examples of student work within Grades K–6 · Real teachers’ notes and reflections for discussion It’s time to turn around our approach to mathematics instruction, end deficit thinking, and nurture each student’s mathematical strengths by emphasizing what makes them each unique and powerful.
“Teaching through problem-solving” is a commonly used phrase for mathematics educators. This book shows how to use worthwhile and interesting mathematics tasks and problems to build a classroom culture based on students’ reasoning and thinking. It develops a set of axioms about problem-solving classrooms to show teachers that mathematics is playful and engaging. It presents an aspirational vision for school mathematics, one which all teachers can bring into being in their classrooms.
Why do some equations have one solution, others two or even more solutions and some no solutions? Why do we sometimes need to ""switch"" the direction of an inequality symbol in solving an inequality? What could you say if a student described a function as an equation? How much do you know...and how much do you need to know? Helping your students develop a robust understanding of expressions, equations and functions requires that you understand this mathematics deeply. But what does that mean? This book focuses on essential knowledge for teachers about expressions, equations and functions. It is organised around five big ideas, supported by multiple smaller, interconnected ideas - essential understandings. Taking you beyond a simple introduction to expressions, equations and functions, the book will broaden and deepen your mathematical understanding of one of the most challenging topics for students - and teachers. It will help you engage your students, anticipate their perplexities, avoid pitfalls and dispel misconceptions. You will also learn to develop appropriate tasks, techniques and tools for assessing students' understanding of the topic. Focus on the ideas that you need to understand thoroughly to teach confidently.
This book draws upon studies of the development of young children's mathematical and analogical reasoning in the United States and Australia to address a number of significant issues in the mathematical development of young children.