Determination of Stability and Control Derivatives from the NASA F/a-18 Harv from Flight Data Using the Maximum Likelihood Method
Author: National Aeronautics and Space Adm Nasa
Publisher:
Published: 2018-11-07
Total Pages: 102
ISBN-13: 9781730938672
DOWNLOAD EBOOKThis report is a compilation of PID (Proportional Integral Derivative) results for both longitudinal and lateral directional analysis that was completed during Fall 1994. It had earlier established that the maneuvers available for PID containing independent control surface inputs from OBES were not well suited for extracting the cross-coupling static (i.e., C(sub N beta)) or dynamic (i.e., C(sub Npf)) derivatives. This was due to the fact that these maneuvers were designed with the goal of minimizing any lateral directional motion during longitudinal maneuvers and vice-versa. This allows for greater simplification in the aerodynamic model as far as coupling between longitudinal and lateral directions is concerned. As a result, efforts were made to reanalyze this data and extract static and dynamic derivatives for the F/A-18 HARV (High Angle of Attack Research Vehicle) without the inclusion of the cross-coupling terms such that more accurate estimates of classical model terms could be acquired. Four longitudinal flights containing static PID maneuvers were examined. The classical state equations already available in pEst for alphadot, qdot and thetadot were used. Three lateral directional flights of PID static maneuvers were also examined. The classical state equations already available in pEst for betadot, p dot, rdot and phi dot were used. Enclosed with this document are the full set of longitudinal and lateral directional parameter estimate plots showing coefficient estimates along with Cramer-Rao bounds. In addition, a representative time history match for each type of meneuver tested at each angle of attack is also enclosed. Napolitano, Marcello R. Unspecified Center...