Expanded and updated with new findings and new features New chapter on Global Climate providing a self-contained treatment of climate forcing, feedbacks, and climate sensitivity New chapter on Atmospheric Organic Aerosols and new treatment of the statistical method of Positive Matrix Factorization Updated treatments of physical meteorology, atmospheric nucleation, aerosol-cloud relationships, chemistry of biogenic hydrocarbons Each topic developed from the fundamental science to the point of application to real-world problems New problems at an introductory level to aid in classroom teaching
Research related to ambient particulate matter (PM) remains very relevant today due to the adverse effects that PM have on human health. PM are pollutants with varying chemical compositions and may originate from multiple emission sources, which directly affects their toxicity. To formulate effective control and mitigation strategies, it is necessary to identify PM sources and to estimate their influence on ambient PM concentration, a process that is known as source apportionment (SA). Depending on the geographical location and characteristics of an area, many anthropogenic and natural sources may contribute to PM concentration levels, such as dust resuspension, sea salt, traffic, secondary aerosol formation, industrial emissions, ship emissions, biomass burning, power plant emissions, etc. Different methodological approaches have been used over the years to study the aforementioned topics, but some scientific challenges remain, mainly related to the following subjects: real-time chemical analysis and SA, uncertainty estimation of SA results, and analytical optimization for PM samples. Additionally, there are areas in the world for which the results regarding composition and sources of PM are still scarce. The objective of this collection was to include studies on all aspects of PM chemical characterization and source apportionment regarding the inorganic and/or organic fractions of PM.
As this is the first general textbook for the field published in over twenty years, the editors have taken great care to make sure coverage is comprehensive. Diagenesis of organic matter, kerogens, exploration for fossil fuels, and many other subjects are discussed in detail to provide faculty and students with a thorough introduction to organic geochemistry.
Examines in a pedagogical way all pertinent molecular and macroscopic processes that govern the distribution and fate of organic chemicals in the environment and provides simple modeling tools to quantitatively describe these processes and their interplay in a given environmental system Treats fundamental aspects of chemistry, physics, and mathematical modeling as applied to environmentally relevant problems, and gives a state of the art account of the field Teaches the reader how to relate the structure of a given chemical to its physical chemical properties and intrinsic reactivities Provides a holistic and teachable treatment of phase partitioning and transformation processes, as well as a more focused and tailor-made presentation of physical, mathematical, and modeling aspects that apply to environmental situations of concern Includes a large number of questions and problems allowing teachers to explore the depth of understanding of their students or allowing individuals who use the book for self-study to check their progress Provides a companion website, which includes solutions for all problems as well as a large compilation of physical constants and compound properties
Catalytic In-Situ Upgrading of Heavy and Extra-Heavy Crude Oils A comprehensive guide to a cutting-edge and cost-effective refinement process for heavy oil Oil sufficiently viscous that it cannot flow normally from production wells is called heavy oil and constitutes as much as 70% of global oil reserves. Extracting and refining this oil can pose significant challenges, including very high transportation costs. As a result, processes which produce and partially refine heavy oil in situ, known as catalytic upgrading, are an increasingly important part of the heavy oil extraction process, and the reduced carbon footprint associated with these methods promises to make them even more significant in the coming years. Catalytic In-Situ Upgrading of Heavy and Extra-Heavy Crude Oils provides a comprehensive introduction to these processes. It introduces the properties and characteristics of heavy and extra-heavy oil before discussing different catalysts and catalyzing processes, their mechanisms and underlying physics, and more. It offers the full sweep of description and analysis required for petroleum and chemical engineers to understand this vital aspect of the modern oil industry. Readers will also find: Detailed discussion of subjects including electron paramagnetic resonance spectroscopy, nuclear magnetic resonance spectroscopy, and more Analysis of both liquid catalysts and nanoparticle catalysts A numerical simulation of the catalytic in-situ oil upgrading process Catalytic In-Situ Upgrading of Heavy and Extra-Heavy Crude Oils is a valuable reference for petroleum and chemical engineers as well as advanced undergraduate and graduate students in related fields.
Analytical Techniques in Environmental Chemistry contains the Proceedings of the International Congress held at Barcelona, Spain in November 1978. Separating 60 papers of the Congress as chapters, this book begins with a description of the natural and pollutant organic compounds in contemporary aquatic environments; recognition of the sources of isoprenoid alkanes in recent environments; and patterns of hydrocarbon contamination in California coastal waters. Other topics discuss include determination of trace level hydrocarbons in marine biota; recent progress in polycyclic aromatic chemistry and its significance for environmental chemistry; profiles of polycyclic aromatic hydrocarbons in suspended particles; and chemical carcinogenesis.