Designing and Building Enterprise Knowledge Graphs

Designing and Building Enterprise Knowledge Graphs

Author: Juan Sequeda

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 142

ISBN-13: 3031019164

DOWNLOAD EBOOK

This book is a guide to designing and building knowledge graphs from enterprise relational databases in practice.\ It presents a principled framework centered on mapping patterns to connect relational databases with knowledge graphs, the roles within an organization responsible for the knowledge graph, and the process that combines data and people. The content of this book is applicable to knowledge graphs being built either with property graph or RDF graph technologies. Knowledge graphs are fulfilling the vision of creating intelligent systems that integrate knowledge and data at large scale. Tech giants have adopted knowledge graphs for the foundation of next-generation enterprise data and metadata management, search, recommendation, analytics, intelligent agents, and more. We are now observing an increasing number of enterprises that seek to adopt knowledge graphs to develop a competitive edge. In order for enterprises to design and build knowledge graphs, they need to understand the critical data stored in relational databases. How can enterprises successfully adopt knowledge graphs to integrate data and knowledge, without boiling the ocean? This book provides the answers.


Knowledge Graphs

Knowledge Graphs

Author: Aidan Hogan

Publisher: Morgan & Claypool Publishers

Published: 2021-11-08

Total Pages: 257

ISBN-13: 1636392369

DOWNLOAD EBOOK

This book provides a comprehensive and accessible introduction to knowledge graphs, which have recently garnered notable attention from both industry and academia. Knowledge graphs are founded on the principle of applying a graph-based abstraction to data, and are now broadly deployed in scenarios that require integrating and extracting value from multiple, diverse sources of data at large scale. The book defines knowledge graphs and provides a high-level overview of how they are used. It presents and contrasts popular graph models that are commonly used to represent data as graphs, and the languages by which they can be queried before describing how the resulting data graph can be enhanced with notions of schema, identity, and context. The book discusses how ontologies and rules can be used to encode knowledge as well as how inductive techniques—based on statistics, graph analytics, machine learning, etc.—can be used to encode and extract knowledge. It covers techniques for the creation, enrichment, assessment, and refinement of knowledge graphs and surveys recent open and enterprise knowledge graphs and the industries or applications within which they have been most widely adopted. The book closes by discussing the current limitations and future directions along which knowledge graphs are likely to evolve. This book is aimed at students, researchers, and practitioners who wish to learn more about knowledge graphs and how they facilitate extracting value from diverse data at large scale. To make the book accessible for newcomers, running examples and graphical notation are used throughout. Formal definitions and extensive references are also provided for those who opt to delve more deeply into specific topics.


Knowledge Graphs and Big Data Processing

Knowledge Graphs and Big Data Processing

Author: Valentina Janev

Publisher: Springer Nature

Published: 2020-07-15

Total Pages: 212

ISBN-13: 3030531996

DOWNLOAD EBOOK

This open access book is part of the LAMBDA Project (Learning, Applying, Multiplying Big Data Analytics), funded by the European Union, GA No. 809965. Data Analytics involves applying algorithmic processes to derive insights. Nowadays it is used in many industries to allow organizations and companies to make better decisions as well as to verify or disprove existing theories or models. The term data analytics is often used interchangeably with intelligence, statistics, reasoning, data mining, knowledge discovery, and others. The goal of this book is to introduce some of the definitions, methods, tools, frameworks, and solutions for big data processing, starting from the process of information extraction and knowledge representation, via knowledge processing and analytics to visualization, sense-making, and practical applications. Each chapter in this book addresses some pertinent aspect of the data processing chain, with a specific focus on understanding Enterprise Knowledge Graphs, Semantic Big Data Architectures, and Smart Data Analytics solutions. This book is addressed to graduate students from technical disciplines, to professional audiences following continuous education short courses, and to researchers from diverse areas following self-study courses. Basic skills in computer science, mathematics, and statistics are required.


Knowledge Graphs

Knowledge Graphs

Author: Dieter Fensel

Publisher: Springer Nature

Published: 2020-01-31

Total Pages: 156

ISBN-13: 3030374394

DOWNLOAD EBOOK

This book describes methods and tools that empower information providers to build and maintain knowledge graphs, including those for manual, semi-automatic, and automatic construction; implementation; and validation and verification of semantic annotations and their integration into knowledge graphs. It also presents lifecycle-based approaches for semi-automatic and automatic curation of these graphs, such as approaches for assessment, error correction, and enrichment of knowledge graphs with other static and dynamic resources. Chapter 1 defines knowledge graphs, focusing on the impact of various approaches rather than mathematical precision. Chapter 2 details how knowledge graphs are built, implemented, maintained, and deployed. Chapter 3 then introduces relevant application layers that can be built on top of such knowledge graphs, and explains how inference can be used to define views on such graphs, making it a useful resource for open and service-oriented dialog systems. Chapter 4 discusses applications of knowledge graph technologies for e-tourism and use cases for other verticals. Lastly, Chapter 5 provides a summary and sketches directions for future work. The additional appendix introduces an abstract syntax and semantics for domain specifications that are used to adapt schema.org to specific domains and tasks. To illustrate the practical use of the approaches presented, the book discusses several pilots with a focus on conversational interfaces, describing how to exploit knowledge graphs for e-marketing and e-commerce. It is intended for advanced professionals and researchers requiring a brief introduction to knowledge graphs and their implementation.


The Semantic Web – ISWC 2019

The Semantic Web – ISWC 2019

Author: Chiara Ghidini

Publisher: Springer Nature

Published: 2019-10-17

Total Pages: 794

ISBN-13: 303030793X

DOWNLOAD EBOOK

The two-volume set of LNCS 11778 and 11779 constitutes the refereed proceedings of the 18th International Semantic Web Conference, ISWC 2019, held in Auckland, New Zealand, in October 2019. The ISWC conference is the premier international forum for the Semantic Web / Linked Data Community. The total of 74 full papers included in this volume was selected from 283 submissions. The conference is organized in three tracks: for the Research Track 42 full papers were selected from 194 submissions; the Resource Track contains 21 full papers, selected from 64 submissions; and the In-Use Track features 11 full papers which were selected from 25 submissions to this track.


A Knowledge Representation Practionary

A Knowledge Representation Practionary

Author: Michael K. Bergman

Publisher: Springer

Published: 2018-12-12

Total Pages: 462

ISBN-13: 3319980920

DOWNLOAD EBOOK

This major work on knowledge representation is based on the writings of Charles S. Peirce, a logician, scientist, and philosopher of the first rank at the beginning of the 20th century. This book follows Peirce's practical guidelines and universal categories in a structured approach to knowledge representation that captures differences in events, entities, relations, attributes, types, and concepts. Besides the ability to capture meaning and context, the Peircean approach is also well-suited to machine learning and knowledge-based artificial intelligence. Peirce is a founder of pragmatism, the uniquely American philosophy. Knowledge representation is shorthand for how to represent human symbolic information and knowledge to computers to solve complex questions. KR applications range from semantic technologies and knowledge management and machine learning to information integration, data interoperability, and natural language understanding. Knowledge representation is an essential foundation for knowledge-based AI. This book is structured into five parts. The first and last parts are bookends that first set the context and background and conclude with practical applications. The three main parts that are the meat of the approach first address the terminologies and grammar of knowledge representation, then building blocks for KR systems, and then design, build, test, and best practices in putting a system together. Throughout, the book refers to and leverages the open source KBpedia knowledge graph and its public knowledge bases, including Wikipedia and Wikidata. KBpedia is a ready baseline for users to bridge from and expand for their own domain needs and applications. It is built from the ground up to reflect Peircean principles. This book is one of timeless, practical guidelines for how to think about KR and to design knowledge management (KM) systems. The book is grounded bedrock for enterprise information and knowledge managers who are contemplating a new knowledge initiative. This book is an essential addition to theory and practice for KR and semantic technology and AI researchers and practitioners, who will benefit from Peirce's profound understanding of meaning and context.


Learning Environments by Design

Learning Environments by Design

Author: Catherine Lombardozzi

Publisher: Association for Talent Development

Published: 2015-09-14

Total Pages: 193

ISBN-13: 1607283077

DOWNLOAD EBOOK

Learning Environments by Design deeply explores today’s workplace learning. This book empowers you to customize learning for your workforce and unearths the answers to the questions you’ve been asking: How does learning happen? What is the future of instructional design? What makes learning environments work? Since the boom of e-learning, informal learning, and social learning, the learning environment landscape has changed dramatically and now offers a wide array of options for supporting knowledge and skill development at work. In this book, learning strategist Catherine Lombardozzi describes practical ways to customize learning experiences by creating a curated approach to skills development—one that features informal and social learning, developmental activities, experiential learning, as well as formal training. Authored by a career learning professional with more than 30 years’ experience, Learning Environments by Design is filled with useful examples, resources, and suggested learning environment blueprints to help you continue to be successful in a field that is forever changing. In this book, you will learn to: design a learning environment that supports learning and performance deliver more focused and impactful solutions to learning needs scaffold self-directed and social learning.


Graph-Powered Machine Learning

Graph-Powered Machine Learning

Author: Alessandro Negro

Publisher: Simon and Schuster

Published: 2021-10-05

Total Pages: 494

ISBN-13: 163835393X

DOWNLOAD EBOOK

Upgrade your machine learning models with graph-based algorithms, the perfect structure for complex and interlinked data. Summary In Graph-Powered Machine Learning, you will learn: The lifecycle of a machine learning project Graphs in big data platforms Data source modeling using graphs Graph-based natural language processing, recommendations, and fraud detection techniques Graph algorithms Working with Neo4J Graph-Powered Machine Learning teaches to use graph-based algorithms and data organization strategies to develop superior machine learning applications. You’ll dive into the role of graphs in machine learning and big data platforms, and take an in-depth look at data source modeling, algorithm design, recommendations, and fraud detection. Explore end-to-end projects that illustrate architectures and help you optimize with best design practices. Author Alessandro Negro’s extensive experience shines through in every chapter, as you learn from examples and concrete scenarios based on his work with real clients! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Identifying relationships is the foundation of machine learning. By recognizing and analyzing the connections in your data, graph-centric algorithms like K-nearest neighbor or PageRank radically improve the effectiveness of ML applications. Graph-based machine learning techniques offer a powerful new perspective for machine learning in social networking, fraud detection, natural language processing, and recommendation systems. About the book Graph-Powered Machine Learning teaches you how to exploit the natural relationships in structured and unstructured datasets using graph-oriented machine learning algorithms and tools. In this authoritative book, you’ll master the architectures and design practices of graphs, and avoid common pitfalls. Author Alessandro Negro explores examples from real-world applications that connect GraphML concepts to real world tasks. What's inside Graphs in big data platforms Recommendations, natural language processing, fraud detection Graph algorithms Working with the Neo4J graph database About the reader For readers comfortable with machine learning basics. About the author Alessandro Negro is Chief Scientist at GraphAware. He has been a speaker at many conferences, and holds a PhD in Computer Science. Table of Contents PART 1 INTRODUCTION 1 Machine learning and graphs: An introduction 2 Graph data engineering 3 Graphs in machine learning applications PART 2 RECOMMENDATIONS 4 Content-based recommendations 5 Collaborative filtering 6 Session-based recommendations 7 Context-aware and hybrid recommendations PART 3 FIGHTING FRAUD 8 Basic approaches to graph-powered fraud detection 9 Proximity-based algorithms 10 Social network analysis against fraud PART 4 TAMING TEXT WITH GRAPHS 11 Graph-based natural language processing 12 Knowledge graphs


Graph Databases

Graph Databases

Author: Ian Robinson

Publisher: "O'Reilly Media, Inc."

Published: 2013-06-10

Total Pages: 161

ISBN-13: 1449356222

DOWNLOAD EBOOK

Discover how graph databases can help you manage and query highly connected data. With this practical book, you’ll learn how to design and implement a graph database that brings the power of graphs to bear on a broad range of problem domains. Whether you want to speed up your response to user queries or build a database that can adapt as your business evolves, this book shows you how to apply the schema-free graph model to real-world problems. Learn how different organizations are using graph databases to outperform their competitors. With this book’s data modeling, query, and code examples, you’ll quickly be able to implement your own solution. Model data with the Cypher query language and property graph model Learn best practices and common pitfalls when modeling with graphs Plan and implement a graph database solution in test-driven fashion Explore real-world examples to learn how and why organizations use a graph database Understand common patterns and components of graph database architecture Use analytical techniques and algorithms to mine graph database information