This book is for RF Engineers and, in particular, those engineers focusing mostly on RF systems and RFIC design. The author develops systematic methods for RF systems design, complete with a comprehensive set of design formulas. Its focus on mobile station transmitter and receiver system design also applies to transceiver design of other wireless systems such as WLAN. This comprehensive reference work covers a wide range of topics from general principles of communication theory, as it applies to digital radio designs to specific examples on implementing multimode mobile systems.
With the proliferation of wireless networks, there is a need for more compact, low-cost, power efficient transmitters that are capable of supporting the various communication standards, including Bluetooth, WLAN, GSM/EDGE, WCDMA and 4G of 3GPP cellular. This book describes a novel idea of RF digital-to-analog converters (RFDAC) and demonstrates how they can realize all-digital, fully-integrated RF transmitters that support all the current multi-mode and multi-band communication standards. With this book the reader will: - Understand the challenges of realizing a universal CMOS RF transmitter - Recognize the design issues and the advantages and disadvantages related to analog and digital transmitter architectures - Master designing an RF transmitter from system level modeling techniques down to circuit designs and their related layout know-hows - Grasp digital polar and I/Q calibration techniques as well as the digital predistortion approaches - Learn how to generate appropriate digital I/Q baseband signals in order to apply them to the test chip and measure the RF-DAC performance. - Highlights the benefits and implementation challenges of software-defined transmitters using CMOS technology - Includes various types of analog and digital RF transmitter architectures for wireless applications - Presents an all-digital polar RFDAC transmitter architecture and describes in detail its implementation - Presents a new all-digital I/Q RFDAC transmitter architecture and its implementation - Provides comprehensive design techniques from system level to circuit level - Introduces several digital predistortion techniques which can be used in RF transmitters - Describes the entire flow of system modeling, circuit simulation, layout techniques and the measurement process
This second edition of the highly acclaimed RF Power Amplifiers has been thoroughly revised and expanded to reflect the latest challenges associated with power transmitters used in communications systems. With more rigorous treatment of many concepts, the new edition includes a unique combination of class-tested analysis and industry-proven design techniques. Radio frequency (RF) power amplifiers are the fundamental building blocks used in a vast variety of wireless communication circuits, radio and TV broadcasting transmitters, radars, wireless energy transfer, and industrial processes. Through a combination of theory and practice, RF Power Amplifiers, Second Edition provides a solid understanding of the key concepts, the principle of operation, synthesis, analysis, and design of RF power amplifiers. This extensive update boasts: up to date end of chapter summaries; review questions and problems; an expansion on key concepts; new examples related to real-world applications illustrating key concepts and brand new chapters covering ‘hot topics’ such as RF LC oscillators and dynamic power supplies. Carefully edited for superior readability, this work remains an essential reference for research & development staff and design engineers. Senior level undergraduate and graduate electrical engineering students will also find it an invaluable resource with its practical examples & summaries, review questions and end of chapter problems. Key features: • A fully revised solutions manual is now hosted on a companion website alongside new simulations. • Extended treatment of a broad range of topologies of RF power amplifiers. • In-depth treatment of state-of-the art of modern transmitters and a new chapter on oscillators. • Includes problem-solving methodology, step-by-step derivations and closed-form design equations with illustrations.
Nowadays, the use of power converter technology has expanded into a wide range of low-, medium-, and high-power applications due to the technology’s capability to efficiently manage electrical energy. In this regard, the high penetration of modern microprocessors capable of implementing high-performance nonlinear digital controllers and the recent advances in the development of high-speed switching power electronic devices, where on-state loss and consequently switching loss of power semiconductors are significantly decreased, have contributed to increased efficiency of the new power converters. As a result, the size of power converters becomes small and the power converters with less heat generation have little environmental stress. Several power converter topologies have been recently proposed in the literature for a variety of emerging applications. These novel converter topologies have different design criteria as well as particularities associated with the digital control system. This book provides a comprehensive overview of the current state of the art and addresses recent breakthroughs in a range of power converter technology, with a special emphasis on design, emerging applications, and control.
Design Note Collection, the third book in the Analog Circuit Design series, is a comprehensive volume of applied circuit design solutions, providing elegant and practical design techniques. Design Notes in this volume are focused circuit explanations, easily applied in your own designs. This book includes an extensive power management section, covering switching regulator design, linear regulator design, microprocessor power design, battery management, powering LED lighting, automotive and industrial power design. Other sections span a range of analog design topics, including data conversion, data acquisition, communications interface design, operational amplifier design techniques, filter design, and wireless, RF, communications and network design. Whatever your application -industrial, medical, security, embedded systems, instrumentation, automotive, communications infrastructure, satellite and radar, computers or networking; this book will provide practical design techniques, developed by experts for tackling the challenges of power management, data conversion, signal conditioning and wireless/RF analog circuit design. - A rich collection of applied analog circuit design solutions for use in your own designs. - Each Design Note is presented in a concise, two-page format, making it easy to read and assimilate. - Contributions from the leading lights in analog design, including Bob Dobkin, Jim Williams, George Erdi and Carl Nelson, among others. - Extensive sections covering power management, data conversion, signal conditioning, and wireless/RF.
This book demonstrates to readers why Gallium Nitride (GaN) transistors have a superior performance as compared to the already mature Silicon technology. The new GaN-based transistors here described enable both high frequency and high efficiency power conversion, leading to smaller and more efficient power systems. Coverage includes i) GaN substrates and device physics; ii) innovative GaN -transistors structure (lateral and vertical); iii) reliability and robustness of GaN-power transistors; iv) impact of parasitic on GaN based power conversion, v) new power converter architectures and vi) GaN in switched mode power conversion. Provides single-source reference to Gallium Nitride (GaN)-based technologies, from the material level to circuit level, both for power conversions architectures and switched mode power amplifiers; Demonstrates how GaN is a superior technology for switching devices, enabling both high frequency, high efficiency and lower cost power conversion; Enables design of smaller, cheaper and more efficient power supplies.
This book, first published in 2004, is an expanded and thoroughly revised edition of Tom Lee's acclaimed guide to the design of gigahertz RF integrated circuits. A new chapter on the principles of wireless systems provides a bridge between system and circuit issues. The chapters on low-noise amplifiers, oscillators and phase noise have been significantly expanded. The chapter on architectures now contains several examples of complete chip designs, including a GPS receiver and a wireless LAN transceiver, that bring together the theoretical and practical elements involved in producing a prototype chip. Every section has been revised and updated with findings in the field and the book is packed with physical insights and design tips, and includes a historical overview that sets the whole field in context. With hundreds of circuit diagrams and homework problems this is an ideal textbook for students taking courses on RF design and a valuable reference for practising engineers.
This book focuses on elementary concepts of both radio frequency energy harvesting (RFEH) and wireless power transfer (WPT), and highlights their fundamental requirements followed by recent advancements. It provides a systematic overview of the key components required for RFEH and WPT applications and also comprehensively introduces the pioneering research advancements achieved to date. The state-of-the-art circuit design topologies for the two different applications are presented mainly in terms of antenna operating frequencies, polarization characteristics, efficient matching network circuits, rectifier topologies, and overall rectenna systems. The book serves as a single point of reference for practicing engineers and researchers searching for potential sources and elements involved in the RFEH system as well as in the WPT system, and need rapid training and design guidelines in the following areas: • Different sensing elements used in RFEH and WPT • Inclusions of mathematical expressions and design problems • Illustration of some design examples and performance enhancement techniques
This newly revised and expanded edition of the 2003 Artech House classic, Radio Frequency Integrated Circuit Design, serves as an up-to-date, practical reference for complete RFIC know-how. The second edition includes numerous updates, including greater coverage of CMOS PA design, RFIC design with on-chip components, and more worked examples with simulation results. By emphasizing working designs, this book practically transports you into the authors' own RFIC lab so you can fully understand the function of each design detailed in this book. Among the RFIC designs examined are RF integrated LC-based filters, VCO automatic amplitude control loops, and fully integrated transformer-based circuits, as well as image reject mixers and power amplifiers. If you are new to RFIC design, you can benefit from the introduction to basic theory so you can quickly come up to speed on how RFICs perform and work together in a communications device. A thorough examination of RFIC technology guides you in knowing when RFICs are the right choice for designing a communication device. This leading-edge resource is packed with over 1,000 equations and more than 435 illustrations that support key topics.
It's Back! New chapters, examples, and insights; all infused with the timeless concepts and theories that have helped RF engineers for the past 25 years!RF circuit design is now more important than ever as we find ourselves in an increasingly wireless world. Radio is the backbone of today's wireless industry with protocols such as Bluetooth, Wi-Fi, WiMax, and ZigBee. Most, if not all, mobile devices have an RF component and this book tells the reader how to design and integrate that component in a very practical fashion. This book has been updated to include today's integrated circuit (IC) and system-level design issues as well as keeping its classic "wire lead" material. Design Concepts and Tools Include•The Basics: Wires, Resistors, Capacitors, Inductors•Resonant Circuits: Resonance, Insertion Loss •Filter Design: High-pass, Bandpass, Band-rejection•Impedance Matching: The L Network, Smith Charts, Software Design Tools•Transistors: Materials, Y Parameters, S Parameters•Small Signal RF Amplifier: Transistor Biasing, Y Parameters, S Parameters•RF Power Amplifiers: Automatic Shutdown Circuitry , Broadband Transformers, Practical Winding Hints•RF Front-End: Architectures, Software-Defined Radios, ADC's Effects•RF Design Tools: Languages, Flow, ModelingCheck out this book's companion Web site at: http://www.elsevierdirect.com/companion.jsp?ISBN=9780750685184 for full-color Smith Charts and extra content! - Completely updated but still contains its classic timeless information - Two NEW chapters on RF Front-End Design and RF Design Tools - Not overly math intensive, perfect for the working RF and digital professional that need to build analog-RF-Wireless circuits