The book compiles efficient design and test methodologies for the implementation of reversible logic circuits. The methodologies covered in the book are design approaches, test approaches, fault tolerance in reversible circuits and physical implementation techniques. The book also covers the challenges and the reversible logic circuits to meet these challenges stimulated during each stage of work cycle. The novel computing paradigms are being explored to serve as a basis for fast and low power computation.
This book opens the door to a new interesting and ambitious world of reversible and quantum computing research. It presents the state of the art required to travel around that world safely. Top world universities, companies and government institutions are in a race of developing new methodologies, algorithms and circuits on reversible logic, quantum logic, reversible and quantum computing and nano-technologies. In this book, twelve reversible logic synthesis methodologies are presented for the first time in a single literature with some new proposals. Also, the sequential reversible logic circuitries are discussed for the first time in a book. Reversible logic plays an important role in quantum computing. Any progress in the domain of reversible logic can be directly applied to quantum logic. One of the goals of this book is to show the application of reversible logic in quantum computing. A new implementation of wavelet and multiwavelet transforms using quantum computing is performed for this purpose. Researchers in academia or industry and graduate students, who work in logic synthesis, quantum computing, nano-technology, and low power VLSI circuit design, will be interested in this book.
The book compiles efficient design and test methodologies for the implementation of reversible logic circuits. The methodologies covered in the book are design approaches, test approaches, fault tolerance in reversible circuits and physical implementation techniques. The book also covers the challenges and the reversible logic circuits to meet these challenges stimulated during each stage of work cycle. The novel computing paradigms are being explored to serve as a basis for fast and low power computation.
The development of computing machines found great success in the last decades. But the ongoing miniaturization of integrated circuits will reach its limits in the near future. Shrinking transistor sizes and power dissipation are the major barriers in the development of smaller and more powerful circuits. Reversible logic p- vides an alternative that may overcome many of these problems in the future. For low-power design, reversible logic offers signi?cant advantages since zero power dissipation will only be possible if computation is reversible. Furthermore, quantum computation pro?ts from enhancements in this area, because every quantum circuit is inherently reversible and thus requires reversible descriptions. However, since reversible logic is subject to certain restrictions (e.g. fanout and feedback are not directly allowed), the design of reversible circuits signi?cantly differs from the design of traditional circuits. Nearly all steps in the design ?ow (like synthesis, veri?cation, or debugging) must be redeveloped so that they become applicable to reversible circuits as well. But research in reversible logic is still at the beginning. No continuous design ?ow exists so far. Inthisbook,contributionstoadesign?owforreversiblelogicarepresented.This includes advanced methods for synthesis, optimization, veri?cation, and debugging.
For the first time in book form, this comprehensive and systematic monograph presents methods for the reversible synthesis of logic functions and circuits. It is illustrated with a wealth of examples and figures that describe in detail the systematic methodologies of synthesis using reversible logic.
This book constitutes the proceedings of the 26th International Symposium on VLSI Design and Test, VDAT 2022, which took place in Jammu, India, in July 2022. The 32 regular papers and 16 short papers presented in this volume were carefully reviewed and selected from 220 submissions. They were organized in topical sections as follows: Devices and Technology; Sensors; Analog/Mixed Signal; Digital Design; Emerging Technologies and Memory; System Design.
The book titled Advanced Computational and Communication Paradigms: Proceedings of International Conference on ICACCP 2017, Volume 1 presents refereed high-quality papers of the First International Conference on Advanced Computational and Communication Paradigms (ICACCP 2017) organized by the Department of Computer Science and Engineering, Sikkim Manipal Institute of Technology, held from 8– 10 September 2017. ICACCP 2017 covers an advanced computational paradigms and communications technique which provides failsafe and robust solutions to the emerging problems faced by mankind. Technologists, scientists, industry professionals and research scholars from regional, national and international levels are invited to present their original unpublished work in this conference. There were about 550 technical paper submitted. Finally after peer review, 142 high-quality papers have been accepted and registered for oral presentation which held across 09 general sessions and 05 special sessions along with 04 keynote address and 06 invited talks. This volume comprises 65 accepted papers of ICACCP 2017.
The International Conference on Signals, Systems and Automation (ICSSA 2011) aims to spread awareness in the research and academic community regarding cutting-edge technological advancements revolutionizing the world. The main emphasis of this conference is on dissemination of information, experience, and research results on the current topics of interest through in-depth discussions and participation of researchers from all over the world. The objective is to provide a platform to scientists, research scholars, and industrialists for interacting and exchanging ideas in a number of research areas. This will facilitate communication among researchers in different fields of Electronics and Communication Engineering. The International Conference on Intelligent System and Data Processing (ICISD 2011) is organized to address various issues that will foster the creation of intelligent solutions in the future. The primary goal of the conference is to bring together worldwide leading researchers, developers, practitioners, and educators interested in advancing the state of the art in computational intelligence and data processing for exchanging knowledge that encompasses a broad range of disciplines among various distinct communities. Another goal is to promote scientific information interchange between researchers, developers, engineers, students, and practitioners working in India and abroad.
This book provides a composite solution for optimal logic designs for Quantum-Dot Cellular Automata based circuits. It includes the basics of new logic functions and novel digital circuit designs, quantum computing with QCA, new trends in quantum and quantum-inspired algorithms and applications, and algorithms to support QCA designers. Futuristic Developments in Quantum-Dot Cellular Automata Circuits for Nanocomputing includes QCA-based new nanoelectronics architectures that help in improving the logic computation and information flow at physical implementation level. The book discusses design methodologies to obtain an optimal layout for some of the basic logic circuits considering key metrics such as wire delays, cell counts, and circuit area that help in improving the logic computation and information flow at physical implementation level. Examines several challenges toward QCA technology like clocking mechanism, floorplan which would facilitate manufacturability, Electronic Design Automation (EDA) tools for design and fabrication like simulation, synthesis, testing etc. The book is intended for students and researchers in electronics and computer disciplines who are interested in this rapidly changing field under the umbrella of courses such as emerging nanotechnologies and its architecture, low-power digital design. The work will also help the manufacturing companies/industry professionals, in nanotechnology and semiconductor engineers in the development of low power quantum computers.
Field-coupled nanocomputing (FCN) paradigms offer fundamentally new approaches to digital information processing that do not utilize transistors or require charge transport. Information transfer and computation are achieved in FCN via local field interactions between nanoscale building blocks that are organized in patterned arrays. Several FCN paradigms are currently under active investigation, including quantum-dot cellular automata (QCA), molecular quantum cellular automata (MQCA), nanomagnetic logic (NML), and atomic quantum cellular automata (AQCA). Each of these paradigms has a number of unique features that make it attractive as a candidate for post-CMOS nanocomputing, and each faces critical challenges to realization. This State-of-the-Art-Survey provides a snapshot of the current developments and novel research directions in the area of FCN. The book is divided into five sections. The first part, Field-Coupled Nanocomputing Paradigms, provides valuable background information and perspectives on the QDCA, MQCA, NML, and AQCA paradigms and their evolution. The second section, Circuits and Architectures, addresses a wide variety of current research on FCN clocking strategies, logic synthesis, circuit design and test, logic-in-memory, hardware security, and architecture. The third section, Modeling and Simulation, considers the theoretical modeling and computer simulation of large FCN circuits, as well as the use of simulations for gleaning physical insight into elementary FCN building blocks. The fourth section, Irreversibility and Dissipation, considers the dissipative consequences of irreversible information loss in FCN circuits, their quantification, and their connection to circuit structure. The fifth section, The Road Ahead: Opportunities and Challenges, includes an edited transcript of the panel discussion that concluded the FCN 13 workshop.