A framework for classifying different types of tailings, ranging from ultra-fine to coarse, based on their geotechnical properties and provides typical geotechnical parameters for the different tailings types. Technologies for dewatering tailings to reduce the risk of storage continue to be developed and the different technologies.
This book presents 09 keynote and invited lectures and 177 technical papers from the 4th International Conference on Geotechnics for Sustainable Infrastructure Development, held on 28-29 Nov 2019 in Hanoi, Vietnam. The papers come from 35 countries of the five different continents, and are grouped in six conference themes: 1) Deep Foundations; 2) Tunnelling and Underground Spaces; 3) Ground Improvement; 4) Landslide and Erosion; 5) Geotechnical Modelling and Monitoring; and 6) Coastal Foundation Engineering. The keynote lectures are devoted by Prof. Harry Poulos (Australia), Prof. Adam Bezuijen (Belgium), Prof. Delwyn Fredlund (Canada), Prof. Lidija Zdravkovic (UK), Prof. Masaki Kitazume (Japan), and Prof. Mark Randolph (Australia). Four invited lectures are given by Prof. Charles Ng, ISSMGE President, Prof.Eun Chul Shin, ISSMGE Vice-President for Asia, Prof. Norikazu Shimizu (Japan), and Dr.Kenji Mori (Japan).
Annotation Based on 138 proceedings papers from October 2002, this broad reference will become the new standard text for colleges and will become a must for engineers, consultants, suppliers, manufacturers.
This book provides a comprehensive text on the geotechnical and geological aspects of the investigations for and the design and construction of new dams and the review and assessment of existing dams. The book provides dam engineers and geologists with a practical approach, and gives university students an insight into the subject of dam engineering. All phases of investigation, design and construction are covered, through to the preliminary and detailed design phases and ultimately the construction phase. This revised and expanded 2nd edition includes a lengthy new chapter on the assessment of the likelihood of failure of dams by internal erosion and piping.
As long as we have mining and mineral processing, tailings and the responsible management thereof will remain at the forefront, with a company’s environmental, social, and governance (ESG) performance in part a reflection of how well tailings risks are being managed. The Global Industry Standard on Tailings Management (GISTM) was published in August 2020, aiming to prevent catastrophic failure of tailings facilities by providing operators with specified measures and approaches throughout the mine life cycle, taking into account multiple stakeholder perspectives. In 2021, the International Council on Mining & Metals (ICMM) published the Tailings Management: Good Practice Guide intended to support safe, responsible management of tailings across the global mining industry, providing guidance on good governance and engineering practices to support continual improvement in tailings storage facility (TSF) management and help foster and strengthen the safety culture of mining companies. The Tailings Management Handbook is important and timely because there is no other comprehensive resource rooted in these new fundamentals and global principles for tailings management. Tailings management requires interdisciplinary and cross-functional understanding and support, which is apparent throughout this handbook. Dive into the wealth of information contributed by more than 100 world-renowned experts, beautifully crafted into a full-color handbook that focuses on the basics, life-cycle planning, site and tailings characterization, TSF design and construction, as well as systems and operations of TSFs. The inclusion of 42 case studies is an added plus with real-world successes and lessons learned.