This title deals with the design and analysis of log-domain filter circuits. It describes synthesis methods for developing bipolar or BiCMOS filter circuits with cut-off frequencies ranging from the low kilohertz range to several hundred megahertz. Numerous examples provide measured experimental data from IC prototypes.
Often WT systems employ the discrete wavelet transform, implemented on a digital signal processor. However, in ultra low-power applications such as biomedical implantable devices, it is not suitable to implement the WT by means of digital circuitry due to the relatively high power consumption associated with the required A/D converter. Low-power analog realization of the wavelet transform enables its application in vivo, e.g. in pacemakers, where the wavelet transform provides a means to extremely reliable cardiac signal detection. In Ultra Low-Power Biomedical Signal Processing we present a novel method for implementing signal processing based on WT in an analog way. The methodology presented focuses on the development of ultra low-power analog integrated circuits that implement the required signal processing, taking into account the limitations imposed by an implantable device.
This textbook provides a complete introduction to analog filters for senior undergraduate and graduate students. Coverage includes the synthesis of analog filters and many other filter types including passive filters and filters with distributed elements.
Analog Circuit Design contains the contribution of 18 tutorials of the 14th workshop on Advances in Analog Circuit Design. Each part discusses a specific todate topic on new and valuable design ideas in the area of analog circuit design. Each part is presented by six experts in that field and state of the art information is shared and overviewed. This book is number 14 in this successful series of Analog Circuit Design, providing valuable information and excellent overviews of analog circuit design, CAD and RF systems. Analog Circuit Design is an essential reference source for analog circuit designers and researchers wishing to keep abreast with the latest development in the field. The tutorial coverage also makes it suitable for use in an advanced design course.
This book describes techniques that can reduce mechanical-stress-induced inaccuracy and long-term instability in chips. The authors also show that the piezojunction effect can be applied for new types of mechanical-sensor structures. Thermo-mechanical stress is induced when packaged chips cool down to the temperature of application.
This book is based on my doctoral thesis at the Helsinki University of Technology. Several different projects during five years guided me from the basics of the RF IC design to the implementations of highly integrated radio receiver chips. Sharing time and effort between IC and system issues is not always straightforward. I have been lucky to follow both topics and share experiences with diligent and enthusiastic people having different specialities. As a result, this book will cover a wide range of different topics needed in the design of highly integrated radio receivers. Experiences from the first receiver prototypes for the third generation cellular systems form the basis of this book. Most of the issues are directly related to the early proposals of European and Japanese standardization organizations. For example, the chip rate was originally set to 4. 096 Mcps in a wide-band CDMA channel. I have kept that number in the book in most of the examples although it has been later changed to 3. 84 Mcps. I hope that the readers will accept that and the possible other incompabilities to the latest specifications. At least in the research phase the changes even in the most essential requirements are definitely not a rare incident and IC designers should be able to react and modify their designs as soon as they can.
This "current-amplifier cookbook" contains an extensive review of different current amplifier topologies realisable with modern CMOS integration technologies. The book derives the seldom-discussed issue of high-frequency distortion performance for all reviewed amplifier topologies, using as simple and intuitive mathematical methods as possible.
This text describes a conceptual framework for analyzing the performance of PLL frequency synthesizers, and presents optimization procedures for the different performance aspects. It contains basic information and in-depth knowledge, widely illustrated with practical design examples used in industrial products.
This text presents the design of data converters for emerging standards and introduces the underlying circuit design principles. It is an excellent reference for IC and mixed signal designers, design managers and project leaders in industry, particularly those in the wireless semiconductor industry.
Analog Test Signal Generation Using Periodic SigmaDelta-Encoded Data Streams presents a new method to generate high quality analog signals with low hardware complexity. The theory of periodic SigmaDelta-encoded bitstreams is presented along with a set of empirical tables to help select the appropriate parameters of a bitstream. An optimization procedure is also outlined to help select a bit sequence with the desired attributes. A large variety of signals can be generated using this approach. Silicon implementation issues are discussed with a specific emphasis on area overhead and ease of design. One FPGA circuit and three different silicon implementations are presented along with experimental results. It is shown that simple designs are capable of generating very high precision signals-on-chip. The technique is further extended to multi-bit signal generation where it is shown how to increase the performance of arbitrary waveform, generators commonly found in past and present-day mixed-signal testers. No hardware modifications are required, only the numbers in memory are changed. Three different calibration techniques to reduce the effects of the AWG's non-linearities are also introduced, together with supporting experimental evidence. The main focus of this text is to describe an area-efficient technique for analog signal generation using SigmaDelta-encoded data stream. The main characteristics of the technique are: High quality signals (SFDR of 110 dB observed); Large variety of signals generated; Bitstreams easily obtained with a fast optimization program; Good frequency resolution, compatible with coherent sampling; Simple and fast hardware implementation; Mostly digital, except an easily testable 1-bit DAC and possibly a reconstruction filter; Memory already available on-chip can be reused, reducing area overhead; Designs can be incorporated into existing CAD tools; High frequency generation.