Demand-Side Peer-to-Peer Energy Trading provides a comprehensive study of the latest developments in technology, protocols, implementation, and application of peer-to-peer and transactive energy concepts in energy systems and their role in worldwide energy evolution and decarbonization efforts. It presents practical aspects and approaches with evidence from applications to real-world energy systems through in-depth technical discussions, use cases, and examples. This multidisciplinary reference is suitable for researchers and industry stakeholders who focus on the field of energy systems and energy economics, as well as researchers and developers from different branches of engineering, energy, computer sciences, data, economic, and operation research fields.
Risk-Based Energy Management: DC, AC and Hybrid AC-DC Microgrids defines the problems and challenges of DC, AC and hybrid AC-DC microgrids and considers the right tactics and risk-based scheduling to tackle them. The book looks at the intermittent nature of renewable generation, demand and market price with the risk to DC, AC and hybrid AC-DC microgrids, which makes it relevant for anyone in renewable energy demand and supply. As utilization of distributed energy resources and the intermittent nature of renewable generations, demand and market price can put the operation of DC, AC and hybrid AC-DC microgrids at risk, this book presents a timely resource. - Discusses both the challenges and solutions surrounding DC, AC and hybrid AC-DC microgrids - Proposes robust scheduling of DC, AC and hybrid AC-DC microgrids under uncertain environments - Includes modeling upstream grid prices, renewable resources and intermittent load in the decision-making process of DC, AC and hybrid AC-DC microgrids
Local Electricity Markets introduces the fundamental characteristics, needs, and constraints shaping the design and implementation of local electricity markets. It addresses current proposed local market models and lessons from their limited practical implementation. The work discusses relevant decision and informatics tools considered important in the implementation of local electricity markets. It also includes a review on management and trading platforms, including commercially available tools. Aspects of local electricity market infrastructure are identified and discussed, including physical and software infrastructure. It discusses the current regulatory frameworks available for local electricity market development internationally. The work concludes with a discussion of barriers and opportunities for local electricity markets in the future. - Delineates key components shaping the design and implementation of local electricity market structure - Provides a coherent view on the enabling infrastructures and technologies that underpin local market expansion - Explores the current regulatory environment for local electricity markets drawn from a global panel of contributors - Exposes future paths toward widespread implementation of local electricity markets using an empirical review of barriers and opportunities - Reviews relevant local electricity market case studies, pilots and demonstrators already deployed and under implementation
Blockchain-Based Smart Grids presents emerging applications of blockchain in electrical system and looks to future developments in the use of blockchain technology in the energy market. Rapid growth of renewable energy resources in power systems and significant developments in the telecommunication systems has resulted in new market designs being employed to cover unpredictable and distributed generation of electricity. This book considers the marriage of blockchain and grid modernization, and discusses the transaction shifts in smart grids, from centralized to peer-to-peer structures. In addition, it addresses the effective application of these structures to speed up processes, resulting in more flexible electricity systems. Aimed at moving towards blockchain-based smart grids with renewable applications, this book is useful to researchers and practitioners in all sectors of smart grids, including renewable energy providers, manufacturers and professionals involved in electricity generation from renewable sources, grid modernization and smart grid applications.
This open access book explores the collision between the sustainable energy transition and the Internet of Things (IoT). In that regard, this book’s arrival is timely. Not only is the Internet of Things for energy applications, herein called the energy Internet of Things (eIoT), rapidly developing but also the transition towards sustainable energy to abate global climate is very much at the forefront of public discourse. It is within the context of these two dynamic thrusts, digitization and global climate change, that the energy industry sees itself undergoing significant change in how it is operated and managed. This book recognizes that they impose five fundamental energy management change drivers: 1.) the growing demand for electricity, 2.) the emergence of renewable energy resources, 3.) the emergence of electrified transportation, 4.) the deregulation of electric power markets, 5.) and innovations in smart grid technology. Together, they challenge many of the assumptions upon which the electric grid was first built. The goal of this book is to provide a single integrated picture of how eIoT can come to transform our energy infrastructure. This book links the energy management change drivers mentioned above to the need for a technical energy management solution. It, then, describes how eIoT meets many of the criteria required for such a technical solution. In that regard, the book stresses the ability of eIoT to add sensing, decision-making, and actuation capabilities to millions or perhaps even billions of interacting “smart" devices. With such a large scale transformation composed of so many independent actions, the book also organizes the discussion into a single multi-layer energy management control loop structure. Consequently, much attention is given to not just network-enabled physical devices but also communication networks, distributed control & decision making, and finally technical architectures and standards. Having gone into the detail of these many simultaneously developing technologies, the book returns to how these technologies when integrated form new applications for transactive energy. In that regard, it highlights several eIoT-enabled energy management use cases that fundamentally change the relationship between end users, utilities, and grid operators. Consequently, the book discusses some of the emerging applications for utilities, industry, commerce, and residences. The book concludes that these eIoT applications will transform today’s grid into one that is much more responsive, dynamic, adaptive and flexible. It also concludes that this transformation will bring about new challenges and opportunities for the cyber-physical-economic performance of the grid and the business models of its increasingly growing number of participants and stakeholders.
Smart distribution networks are one of the key research topics of countries looking to modernise electric power networks. Smart Electricity Distributions Networks aims to provide a basic discussion of the smart distribution concept and new technologies related to it, including distributed energy resources (DERs), demand side integration, microgrids, CELL and virtual power plants. With writing from leading contributors in the field of smart distribution networks, this volume discusses different concepts within the field as well as the best methods to analyse smart distribution systems to provide a cohesive overview of issues relating to Smart Grid and related technologies. This book will be valuable to those with an interest in understanding the technologies and performance of smart distribution networks as well as engaging with the wider debate over the future Smart Grid.
With different intensities, depending on the season, every morning and evening of any weekday there are the same peaks in electricity demand. Peaks can bring about significantly negative environmental and economic impacts. Demand Side Response is a relatively recent solution in Europe which has the potential to reduce peak demand and ease impending capacity shortages. Peak Energy Demand and Demand Side Response presents evidence on a set of Demand Side Response activities, ranging from price-based to incentive-based programmes and policies. Examples are drawn from different programmes for both residential and non-residential sectors of electricity demand, including Time of Use tariffs, Critical Peak Pricing Automated Demand Controllers and Ancillary Services. The book also looks at the actual energy saving impacts of smart meters, the activities which constitute peak demand and the potential opportunities associated with European smart grids and Capacity Markets. This is the first book presenting comprehensive analysis of the impacts, cost benefits and risks associated with Demand Side Response programmes and policies. It should be of interest to students, scholars and policy-makers in the areas of energy, environmental economics and applied economics.
Present energy systems are undergoing a radical transformation, driven by the urgent need to address the climate change crisis. At the same time, we are witnessing the sharp growth of energy data and a revolution of advanced technologies, with artificial intelligence (AI) and Blockchain emerging as two of the most transformative technologies of our time. The convergence of these two technologies has the potential to create a paradigm shift in the energy sector, enabling the development of smart energy systems that are more resilient, efficient, and sustainable. This book situates itself at the forefront of this paradigm shift, providing a timely and comprehensive guide to AI and Blockchain technologies in the energy system. Moving from an introduction to the basic concepts of smart energy systems, this book proceeds to examine the key challenges facing the energy system, and how AI and Blockchain can be used to address these challenges. Research examples are presented to showcase the role and impact of these new technologies, while the latest developed testbeds are summarised and explained to help researchers accelerate their development of these technologies. This book is an indispensable guide to the current changes in the energy system, being of particular use to industry professionals, from researchers to management, looking to stay ahead of technological developments.