Ready to simplify the process of building data lakehouses and data pipelines at scale? In this practical guide, learn how Delta Lake is helping data engineers, data scientists, and data analysts overcome key data reliability challenges with modern data engineering and management techniques. Authors Denny Lee, Tristen Wentling, Scott Haines, and Prashanth Babu (with contributions from Delta Lake maintainer R. Tyler Croy) share expert insights on all things Delta Lake--including how to run batch and streaming jobs concurrently and accelerate the usability of your data. You'll also uncover how ACID transactions bring reliability to data lakehouses at scale. This book helps you: Understand key data reliability challenges and how Delta Lake solves them Explain the critical role of Delta transaction logs as a single source of truth Learn the Delta Lake ecosystem with technologies like Apache Flink, Kafka, and Trino Architect data lakehouses with the medallion architecture Optimize Delta Lake performance with features like deletion vectors and liquid clustering
Perform fast interactive analytics against different data sources using the Trino high-performance distributed SQL query engine. With this practical guide, you'll learn how to conduct analytics on data where it lives, whether it's Hive, Cassandra, a relational database, or a proprietary data store. Analysts, software engineers, and production engineers will learn how to manage, use, and even develop with Trino. Initially developed by Facebook, open source Trino is now used by Netflix, Airbnb, LinkedIn, Twitter, Uber, and many other companies. Matt Fuller, Manfred Moser, and Martin Traverso show you how a single Trino query can combine data from multiple sources to allow for analytics across your entire organization. Get started: Explore Trino's use cases and learn about tools that will help you connect to Trino and query data Go deeper: Learn Trino's internal workings, including how to connect to and query data sources with support for SQL statements, operators, functions, and more Put Trino in production: Secure Trino, monitor workloads, tune queries, and connect more applications; learn how other organizations apply Trino
Understand the complexities of modern-day data engineering platforms and explore strategies to deal with them with the help of use case scenarios led by an industry expert in big data Key FeaturesBecome well-versed with the core concepts of Apache Spark and Delta Lake for building data platformsLearn how to ingest, process, and analyze data that can be later used for training machine learning modelsUnderstand how to operationalize data models in production using curated dataBook Description In the world of ever-changing data and schemas, it is important to build data pipelines that can auto-adjust to changes. This book will help you build scalable data platforms that managers, data scientists, and data analysts can rely on. Starting with an introduction to data engineering, along with its key concepts and architectures, this book will show you how to use Microsoft Azure Cloud services effectively for data engineering. You'll cover data lake design patterns and the different stages through which the data needs to flow in a typical data lake. Once you've explored the main features of Delta Lake to build data lakes with fast performance and governance in mind, you'll advance to implementing the lambda architecture using Delta Lake. Packed with practical examples and code snippets, this book takes you through real-world examples based on production scenarios faced by the author in his 10 years of experience working with big data. Finally, you'll cover data lake deployment strategies that play an important role in provisioning the cloud resources and deploying the data pipelines in a repeatable and continuous way. By the end of this data engineering book, you'll know how to effectively deal with ever-changing data and create scalable data pipelines to streamline data science, ML, and artificial intelligence (AI) tasks. What you will learnDiscover the challenges you may face in the data engineering worldAdd ACID transactions to Apache Spark using Delta LakeUnderstand effective design strategies to build enterprise-grade data lakesExplore architectural and design patterns for building efficient data ingestion pipelinesOrchestrate a data pipeline for preprocessing data using Apache Spark and Delta Lake APIsAutomate deployment and monitoring of data pipelines in productionGet to grips with securing, monitoring, and managing data pipelines models efficientlyWho this book is for This book is for aspiring data engineers and data analysts who are new to the world of data engineering and are looking for a practical guide to building scalable data platforms. If you already work with PySpark and want to use Delta Lake for data engineering, you'll find this book useful. Basic knowledge of Python, Spark, and SQL is expected.
The data lakehouse is the next generation of the data warehouse and data lake, designed to meet today's complex and ever-changing analytics, machine learning, and data science requirements. Learn about the features and architecture of the data lakehouse, along with its powerful analytical infrastructure. Appreciate how the universal common connector blends structured, textual, analog, and IoT data. Maintain the lakehouse for future generations through Data Lakehouse Housekeeping and Data Future-proofing. Know how to incorporate the lakehouse into an existing data governance strategy. Incorporate data catalogs, data lineage tools, and open source software into your architecture to ensure your data scientists, analysts, and end users live happily ever after.
Learn how to use, deploy, and maintain Apache Spark with this comprehensive guide, written by the creators of the open-source cluster-computing framework. With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. Youâ??ll explore the basic operations and common functions of Sparkâ??s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Sparkâ??s scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasetsâ??Sparkâ??s core APIsâ??through worked examples Dive into Sparkâ??s low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Sparkâ??s stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation
Learn the essentials of data integration with this comprehensive guide, covering everything from sources to solutions, and discover the key to making the most of your data stack Key Features Learn how to leverage modern data stack tools and technologies for effective data integration Design and implement data integration solutions with practical advice and best practices Focus on modern technologies such as cloud-based architectures, real-time data processing, and open-source tools and technologies Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe Definitive Guide to Data Integration is an indispensable resource for navigating the complexities of modern data integration. Focusing on the latest tools, techniques, and best practices, this guide helps you master data integration and unleash the full potential of your data. This comprehensive guide begins by examining the challenges and key concepts of data integration, such as managing huge volumes of data and dealing with the different data types. You’ll gain a deep understanding of the modern data stack and its architecture, as well as the pivotal role of open-source technologies in shaping the data landscape. Delving into the layers of the modern data stack, you’ll cover data sources, types, storage, integration techniques, transformation, and processing. The book also offers insights into data exposition and APIs, ingestion and storage strategies, data preparation and analysis, workflow management, monitoring, data quality, and governance. Packed with practical use cases, real-world examples, and a glimpse into the future of data integration, The Definitive Guide to Data Integration is an essential resource for data eclectics. By the end of this book, you’ll have the gained the knowledge and skills needed to optimize your data usage and excel in the ever-evolving world of data.What you will learn Discover the evolving architecture and technologies shaping data integration Process large data volumes efficiently with data warehousing Tackle the complexities of integrating large datasets from diverse sources Harness the power of data warehousing for efficient data storage and processing Design and optimize effective data integration solutions Explore data governance principles and compliance requirements Who this book is for This book is perfect for data engineers, data architects, data analysts, and IT professionals looking to gain a comprehensive understanding of data integration in the modern era. Whether you’re a beginner or an experienced professional enhancing your knowledge of the modern data stack, this definitive guide will help you navigate the data integration landscape.
Data is bigger, arrives faster, and comes in a variety of formats—and it all needs to be processed at scale for analytics or machine learning. But how can you process such varied workloads efficiently? Enter Apache Spark. Updated to include Spark 3.0, this second edition shows data engineers and data scientists why structure and unification in Spark matters. Specifically, this book explains how to perform simple and complex data analytics and employ machine learning algorithms. Through step-by-step walk-throughs, code snippets, and notebooks, you’ll be able to: Learn Python, SQL, Scala, or Java high-level Structured APIs Understand Spark operations and SQL Engine Inspect, tune, and debug Spark operations with Spark configurations and Spark UI Connect to data sources: JSON, Parquet, CSV, Avro, ORC, Hive, S3, or Kafka Perform analytics on batch and streaming data using Structured Streaming Build reliable data pipelines with open source Delta Lake and Spark Develop machine learning pipelines with MLlib and productionize models using MLflow
Traditional data architecture patterns are severely limited. To use these patterns, you have to ETL data into each tool—a cost-prohibitive process for making warehouse features available to all of your data. The lack of flexibility with these patterns requires you to lock into a set of priority tools and formats, which creates data silos and data drift. This practical book shows you a better way. Apache Iceberg provides the capabilities, performance, scalability, and savings that fulfill the promise of an open data lakehouse. By following the lessons in this book, you'll be able to achieve interactive, batch, machine learning, and streaming analytics with this high-performance open source format. Authors Tomer Shiran, Jason Hughes, and Alex Merced from Dremio show you how to get started with Iceberg. With this book, you'll learn: The architecture of Apache Iceberg tables What happens under the hood when you perform operations on Iceberg tables How to further optimize Apache Iceberg tables for maximum performance How to use Iceberg with popular data engines such as Apache Spark, Apache Flink, and Dremio How Apache Iceberg can be used in streaming and batch ingestion Discover why Apache Iceberg is a foundational technology for implementing an open data lakehouse.
The data lake is a daring new approach for harnessing the power of big data technology and providing convenient self-service capabilities. But is it right for your company? This book is based on discussions with practitioners and executives from more than a hundred organizations, ranging from data-driven companies such as Google, LinkedIn, and Facebook, to governments and traditional corporate enterprises. You’ll learn what a data lake is, why enterprises need one, and how to build one successfully with the best practices in this book. Alex Gorelik, CTO and founder of Waterline Data, explains why old systems and processes can no longer support data needs in the enterprise. Then, in a collection of essays about data lake implementation, you’ll examine data lake initiatives, analytic projects, experiences, and best practices from data experts working in various industries. Get a succinct introduction to data warehousing, big data, and data science Learn various paths enterprises take to build a data lake Explore how to build a self-service model and best practices for providing analysts access to the data Use different methods for architecting your data lake Discover ways to implement a data lake from experts in different industries
If you’re like most R users, you have deep knowledge and love for statistics. But as your organization continues to collect huge amounts of data, adding tools such as Apache Spark makes a lot of sense. With this practical book, data scientists and professionals working with large-scale data applications will learn how to use Spark from R to tackle big data and big compute problems. Authors Javier Luraschi, Kevin Kuo, and Edgar Ruiz show you how to use R with Spark to solve different data analysis problems. This book covers relevant data science topics, cluster computing, and issues that should interest even the most advanced users. Analyze, explore, transform, and visualize data in Apache Spark with R Create statistical models to extract information and predict outcomes; automate the process in production-ready workflows Perform analysis and modeling across many machines using distributed computing techniques Use large-scale data from multiple sources and different formats with ease from within Spark Learn about alternative modeling frameworks for graph processing, geospatial analysis, and genomics at scale Dive into advanced topics including custom transformations, real-time data processing, and creating custom Spark extensions