Defects in Self-Catalysed III-V Nanowires

Defects in Self-Catalysed III-V Nanowires

Author: James A. Gott

Publisher: Springer Nature

Published: 2022-01-28

Total Pages: 158

ISBN-13: 3030940624

DOWNLOAD EBOOK

This thesis presents an in-depth exploration of imperfections that can be found in self-catalysed III-V semiconductor nanowires. By utilising advanced electron microscopy techniques, the interface sharpness and defects at the atomic and macroscopic scale are analysed. It is found that a surprising variety and quantity of defect structures can exist in nanowire systems, and that they can in fact host some never-before-seen defect configurations. To probe how these defects are formed, conditions during nanowire growth can be emulated inside the microscope using the latest generation of in-situ heating holder. This allowed the examination of defect formation, dynamics, and removal, revealing that many of the defects can in fact be eliminated. This information is critical for attaining perfect nanowire growth. The author presents annealing strategies to improve crystal quality, and therefore device performance.


Defects in Self-Catalysed III-V Nanowires

Defects in Self-Catalysed III-V Nanowires

Author: James A. Gott

Publisher:

Published: 2022

Total Pages: 0

ISBN-13: 9783030940638

DOWNLOAD EBOOK

This thesis presents an in-depth exploration of imperfections that can be found in self-catalysed III-V semiconductor nanowires. By utilising advanced electron microscopy techniques, the interface sharpness and defects at the atomic and macroscopic scale are analysed. It is found that a surprising variety and quantity of defect structures can exist in nanowire systems, and that they can in fact host some never-before-seen defect configurations. To probe how these defects are formed, conditions during nanowire growth can be emulated inside the microscope using the latest generation of in-situ heating holder. This allowed the examination of defect formation, dynamics, and removal, revealing that many of the defects can in fact be eliminated. This information is critical for attaining perfect nanowire growth. The author presents annealing strategies to improve crystal quality, and therefore device performance.


Advances in III-V Semiconductor Nanowires and Nanodevices

Advances in III-V Semiconductor Nanowires and Nanodevices

Author: Jianye Li

Publisher: Bentham Science Publishers

Published: 2011-09-09

Total Pages: 186

ISBN-13: 1608050521

DOWNLOAD EBOOK

"Semiconductor nanowires exhibit novel electronic and optical properties due to their unique one-dimensional structure and quantum confinement effects. In particular, III-V semiconductor nanowires have been of great scientific and technological interest fo"


Defects in Nanocrystals

Defects in Nanocrystals

Author: Sergio Pizzini

Publisher: CRC Press

Published: 2020-05-11

Total Pages: 261

ISBN-13: 1000066150

DOWNLOAD EBOOK

Defects in Nanocrystals: Structural and Physico-Chemical Aspects discusses the nature of semiconductor systems and the effect of the size and shape on their thermodynamic and optoelectronic properties at the mesoscopic and nanoscopic levels. The nanostructures considered in this book are individual nanometric crystallites, nanocrystalline films, and nanowires of which the thermodynamic, structural, and optical properties are discussed in detail. The work: Outlines the influence of growth processes on their morphology and structure Describes the benefits of optical spectroscopies in the understanding of the role and nature of defects in nanostructured semiconductors Considers the limits of nanothermodynamics Details the critical role of interfaces in nanostructural behavior Covers the importance of embedding media in the physico-chemical properties of nanostructured semiconductors Explains the negligible role of core point defects vs. surface and interface defects Written for researchers, engineers, and those working in the physical and physicochemical sciences, this work comprehensively details the chemical, structural, and optical properties of semiconductor nanostructures for the development of more powerful and efficient devices.


Synthesis of Nanomaterials

Synthesis of Nanomaterials

Author: S. Noor Mohammad

Publisher: Springer Nature

Published: 2020-10-27

Total Pages: 460

ISBN-13: 3030575853

DOWNLOAD EBOOK

This book deals with the synthesis of nanomaterials with a strong focus on the underlying reaction kinetics and various synthesis mechanisms. It gives a detailed description of all major synthesis routes of many types of novel nanomaterials including nanowires, carbon nanotubes, semiconductor nanotubes, carbon nanobelts, nanofibers, nanorings, nanodots and quantum dots. In addition, it articulates the fundamental mechanisms of nanomaterials synthesis via vapor-phase, liquid-phase and solid-phase processes, highlighting the various strengths and weaknesses of each mechanism. This monograph provides the reader with a thorough review of the known state-of-the-art, along with a detailed comparison and analysis of all possible nanomaterials synthesis mechanisms. An important element of the book is how to obtain critical knowledge for controlling the morphology of nanomaterials and thereby fine tune their materials properties. The book is an ideal guide for graduate students and researchers new to the field seeking to establish or enhance their understanding of the physical and chemical fundamentals of nanomaterials synthesis mechanisms.


Epitaxy of Semiconductors

Epitaxy of Semiconductors

Author: Udo W. Pohl

Publisher: Springer Nature

Published: 2020-07-20

Total Pages: 546

ISBN-13: 3030438694

DOWNLOAD EBOOK

The extended and revised edition of this textbook provides essential information for a comprehensive upper-level graduate course on the crystalline growth of semiconductor heterostructures. Heteroepitaxy is the basis of today’s advanced electronic and optoelectronic devices, and it is considered one of the most important fields in materials research and nanotechnology. The book discusses the structural and electronic properties of strained epitaxial layers, the thermodynamics and kinetics of layer growth, and it describes the major growth techniques: metalorganic vapor-phase epitaxy, molecular-beam epitaxy, and liquid-phase epitaxy. It also examines in detail cubic and hexagonal semiconductors, strain relaxation by misfit dislocations, strain and confinement effects on electronic states, surface structures, and processes during nucleation and growth. Requiring only minimal knowledge of solid-state physics, it provides natural sciences, materials science and electrical engineering students and their lecturers elementary introductions to the theory and practice of epitaxial growth, supported by references and over 300 detailed illustrations. In this second edition, many topics have been extended and treated in more detail, e.g. in situ growth monitoring, application of surfactants, properties of dislocations and defects in organic crystals, and special growth techniques like vapor-liquid-solid growth of nanowires and selective-area epitaxy.


Design and Development of Nanostructured Thin Films

Design and Development of Nanostructured Thin Films

Author: Antonella Macagnano

Publisher: MDPI

Published: 2020-05-13

Total Pages: 386

ISBN-13: 3039287389

DOWNLOAD EBOOK

Due to their unique size-dependent physicochemical properties, nanostructured thin films are used in a wide range of applications from smart coating and drug delivery to electrocatalysis and highly-sensitive sensors. Depending on the targeted application and the deposition technique, these materials have been designed and developed by tuning their atomic-molecular 2D- and/or 3D-aggregation, thickness, crystallinity, and porosity, having effects on their optical, mechanical, catalytic, and conductive properties. Several open questions remain about the impact of nanomaterial production and use on environment and health. Many efforts are currently being made not only to prevent nanotechnologies and nanomaterials from contributing to environmental pollution but also to design nanomaterials to support, control, and protect the environment. This Special Issue aims to cover the recent advances in designing nanostructured films focusing on environmental issues related to their fabrication processes (e.g., low power and low cost technologies, the use of environmentally friendly solvents), their precursors (e.g., waste-recycled, bio-based, biodegradable, and natural materials), their applications (e.g., controlled release of chemicals, mimicking of natural processes, and clean energy conversion and storage), and their use in monitoring environment pollution (e.g., sensors optically- or electrically-sensitive to pollutants)


Wide Band Gap Semiconductor Nanowires 1

Wide Band Gap Semiconductor Nanowires 1

Author: Vincent Consonni

Publisher: John Wiley & Sons

Published: 2014-08-08

Total Pages: 467

ISBN-13: 1118984307

DOWNLOAD EBOOK

GaN and ZnO nanowires can by grown using a wide variety of methods from physical vapor deposition to wet chemistry for optical devices. This book starts by presenting the similarities and differences between GaN and ZnO materials, as well as the assets and current limitations of nanowires for their use in optical devices, including feasibility and perspectives. It then focuses on the nucleation and growth mechanisms of ZnO and GaN nanowires, grown by various chemical and physical methods. Finally, it describes the formation of nanowire heterostructures applied to optical devices.


Synthesis of Inorganic Materials

Synthesis of Inorganic Materials

Author: Ulrich S. Schubert

Publisher: John Wiley & Sons

Published: 2019-08-27

Total Pages: 428

ISBN-13: 3527815147

DOWNLOAD EBOOK

Introduces readers to the field of inorganic materials, while emphasizing synthesis and modification techniques Written from the chemist's point of view, this newly updated and completely revised fourth edition of Synthesis of Inorganic Materials provides a thorough and pedagogical introduction to the exciting and fast developing field of inorganic materials and features all of the latest developments. New to this edition is a chapter on self-assembly and self-organization, as well as all-new content on: demixing of glasses, non-classical crystallization, precursor chemistry, citrate-gel and Pechini liquid mix methods, ice-templating, and materials with hierarchical porosity. Synthesis of Inorganic Materials, 4th Edition features chapters covering: solid-state reactions; formation of solids from the gas phase; formation of solids from solutions and melts; preparation and modification of inorganic polymers; self-assembly and self-organization; templated materials; and nanostructured materials. There is also an extensive glossary to help bridge the gap between chemistry, solid state physics and materials science. In addition, a selection of books and review articles is provided at the end of each chapter as a starting point for more in-depth reading. -Gives the students a thorough overview of the fundamentals and the wide variety of different inorganic materials with applications in research as well as in industry -Every chapter is updated with new content -Includes a completely new chapter covering self-assembly and self-organization -Written by well-known and experienced authors who follow an intuitive and pedagogical approach Synthesis of Inorganic Materials, 4th Edition is a valuable resource for advanced undergraduate students as well as masters and graduate students of inorganic chemistry and materials science.


Semiconductor Nanowires

Semiconductor Nanowires

Author: J Arbiol

Publisher: Elsevier

Published: 2015-03-31

Total Pages: 573

ISBN-13: 1782422633

DOWNLOAD EBOOK

Semiconductor nanowires promise to provide the building blocks for a new generation of nanoscale electronic and optoelectronic devices. Semiconductor Nanowires: Materials, Synthesis, Characterization and Applications covers advanced materials for nanowires, the growth and synthesis of semiconductor nanowires—including methods such as solution growth, MOVPE, MBE, and self-organization. Characterizing the properties of semiconductor nanowires is covered in chapters describing studies using TEM, SPM, and Raman scattering. Applications of semiconductor nanowires are discussed in chapters focusing on solar cells, battery electrodes, sensors, optoelectronics and biology. - Explores a selection of advanced materials for semiconductor nanowires - Outlines key techniques for the property assessment and characterization of semiconductor nanowires - Covers a broad range of applications across a number of fields