Decision Analysis, Game Theory, and Information teaches the basics of decision analysis and game theory, the fundamental tools used over the past half-century by clients, whether businesses, government institutions, or other entities or individuals. Additionally, a brief introduction to basic concepts involving imperfect information concerning other parties are introduced. This handbook is designed for use as a supplementary test for a first-year course, and could also be used in connection with a course on legal methods or law and economics.This handbook comprises Chapters 1 and 2 of Analytical Methods for Lawyers, with appendix and revisions.
Evaluating statistical procedures through decision and game theory, as first proposed by Neyman and Pearson and extended by Wald, is the goal of this problem-oriented text in mathematical statistics. First-year graduate students in statistics and other students with a background in statistical theory and advanced calculus will find a rigorous, thorough presentation of statistical decision theory treated as a special case of game theory. The work of Borel, von Neumann, and Morgenstern in game theory, of prime importance to decision theory, is covered in its relevant aspects: reduction of games to normal forms, the minimax theorem, and the utility theorem. With this introduction, Blackwell and Professor Girshick look at: Values and Optimal Strategies in Games; General Structure of Statistical Games; Utility and Principles of Choice; Classes of Optimal Strategies; Fixed Sample-Size Games with Finite Ω and with Finite A; Sufficient Statistics and the Invariance Principle; Sequential Games; Bayes and Minimax Sequential Procedures; Estimation; and Comparison of Experiments. A few topics not directly applicable to statistics, such as perfect information theory, are also discussed. Prerequisites for full understanding of the procedures in this book include knowledge of elementary analysis, and some familiarity with matrices, determinants, and linear dependence. For purposes of formal development, only discrete distributions are used, though continuous distributions are employed as illustrations. The number and variety of problems presented will be welcomed by all students, computer experts, and others using statistics and game theory. This comprehensive and sophisticated introduction remains one of the strongest and most useful approaches to a field which today touches areas as diverse as gambling and particle physics.
Game Theory And Decision Theory In Agent-Based Systems is a collection of papers from international leading researchers, that offers a broad view of the many ways game theory and decision theory can be applied in agent-based systems, from standard applications of the core elements of the theory to more cutting edge developments. The range of topics discussed in this book provide the reader with the first comprehensive volume that reflects both the depth and breadth of work in applying techniques from game theory and decision theory to design agent-based systems. Chapters include: Selecting Partners; Evolution of Agents with Moral Sentiments in an IPD Exercise; Dynamic Desires; Emotions and Personality; Decision-Theoretic Approach to Game Theory; Shopbot Economics; Finding the Best Way to Join in; Shopbots and Pricebots in Electronic Service Markets; Polynomial Time Mechanisms; Multi-Agent Q-learning and Regression Trees; Satisficing Equilibria; Investigating Commitment Flexibility in Multi-agent Contracts; Pricing in Agent Economies using Multi-agent Q-learning; Using Hypergames to Increase Planned Payoff and Reduce Risk; Bilateral Negotiation with Incomplete and Uncertain Information; Robust Combinatorial Auction Protocol against False-name Bids.
The focus of this book is on establishing theories and methods of both decision and game analysis in management using intuitionistic fuzzy sets. It proposes a series of innovative theories, models and methods such as the representation theorem and extension principle of intuitionistic fuzzy sets, ranking methods of intuitionistic fuzzy numbers, non-linear and linear programming methods for intuitionistic fuzzy multi-attribute decision making and (interval-valued) intuitionistic fuzzy matrix games. These theories and methods form the theory system of intuitionistic fuzzy decision making and games, which is not only remarkably different from those of the traditional, Bayes and/or fuzzy decision theory but can also provide an effective and efficient tool for solving complex management problems. Since there is a certain degree of inherent hesitancy in real-life management, which cannot always be described by the traditional mathematical methods and/or fuzzy set theory, this book offers an effective approach to using the intuitionistic fuzzy set expressed with membership and non-membership functions. This book is addressed to all those involved in theoretical research and practical applications from a variety of fields/disciplines: decision science, game theory, management science, fuzzy sets, operational research, applied mathematics, systems engineering, industrial engineering, economics, etc.
Game theory is a key element in most decision-making processes involving two or more people or organisations. This book explains how game theory can predict the outcome of complex decision-making processes, and how it can help you to improve your own negotiation and decision-making skills. It is grounded in well-established theory, yet the wide-ranging international examples used to illustrate its application offer a fresh approach to an essential weapon in the armoury of the informed manager. The book is accessibly written, explaining in simple terms the underlying mathematics behind games of skill, before moving on to more sophisticated topics such as zero-sum games, mixed-motive games, and multi-person games, coalitions and power. Clear examples and helpful diagrams are used throughout, and the mathematics is kept to a minimum. It is written for managers, students and decision makers in any field.
Games and Decision Making, Second Edition, is a unique blend of decision theory and game theory. From classical optimization to modern game theory, authors Charalambos D. Aliprantis and Subir K. Chakrabarti show the importance of mathematical knowledge in understanding and analyzing issues in decision making. Through an imaginative selection of topics, Aliprantis and Chakrabarti treat decision and game theory as part of one body of knowledge. They move from problems involving the individual decision-maker to progressively more complex problems such as sequential rationality, auctions, and bargaining. By building each chapter on material presented earlier, the authors offer a self-contained and comprehensive treatment of these topics. Successfully class-tested in an advanced undergraduate course at the Krannert School of Management and in a graduate course in economics at Indiana University, Games and Decision Making, Second Edition, is an essential text for advanced undergraduates and graduate students of decision theory and game theory. The book is accessible to students who have a good basic understanding of elementary calculus and probability theory.
To make the best decisions, you need the best information. However, because most issues in game theory are grey, nearly all recent research has been carried out using a simplified method that considers grey systems as white ones. This often results in a forecasting function that is far from satisfactory when applied to many real situations. Grey Ga
The outstanding feature of this book is that it provides a unified account of three types of decision problem. It covers the basic ideas of decision theory, classical game theory, and evolutionary game theory in one volume. No background knowledge of economics or biology is required as examples have been carefully selected for their accessibility. Detailed solutions to the numerous exercises are provided at the back of the book, making it ideal for self-study. This introduction to game theory is intended as a first course for undergraduate students of mathematics, but it will also interest advanced students or researchers in biology and economics.
“I am hard pressed to think of another book that can match the combination of practical insights and reading enjoyment.”—Steven Levitt Game theory means rigorous strategic thinking. It’s the art of anticipating your opponent’s next moves, knowing full well that your rival is trying to do the same thing to you. Though parts of game theory involve simple common sense, much is counterintuitive, and it can only be mastered by developing a new way of seeing the world. Using a diverse array of rich case studies—from pop culture, TV, movies, sports, politics, and history—the authors show how nearly every business and personal interaction has a game-theory component to it. Mastering game theory will make you more successful in business and life, and this lively book is the key to that mastery.
This book constitutes the refereed proceedings of the Second International Conference on Decision and Game Theory for Security, GameSec 2011, held in College Park, Maryland, USA, in November 2011. The 16 revised full papers and 2 plenary keynotes presented were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on attacks, adversaries, and game theory, wireless adhoc and sensor networks, network games, security insurance, security and trust in social networks and security investments.