Deciphering the Long-Term Trend of Atlantic Basin Intense Hurricanes

Deciphering the Long-Term Trend of Atlantic Basin Intense Hurricanes

Author: National Aeronautics and Space Administration (NASA)

Publisher: Createspace Independent Publishing Platform

Published: 2018-08-16

Total Pages: 32

ISBN-13: 9781725633131

DOWNLOAD EBOOK

During the interval of 1944-1997, 120 intense hurricanes (i.e., those of category 3 or higher on the Saffir-Simpson hurricane damage potential scale) were observed in the Atlantic basin, having an annual frequency of 0-7 events per year, being more active prior to the mid 1960's than thereafter (hence a possible two-state division: more active versus less active), and being preferentially lower during El Nino years as compared to non-El Nino years. Because decadal averages of the frequency of intense hurricanes closely resemble those of average temperature anomalies for northern hemispheric and global standards and of the average temperature at the Armagh Observatory (Northern Ireland), a proxy for climatic change, it is inferred that the long-term trends of the annual frequency of intense hurricanes and temperature may be statistically related. Indeed, on the basis of 4- and 10-yr moving averages, one finds that there exists strong linear associations between the annual frequency of intense hurricanes in the Atlantic basin and temperature (specially, when temperature slightly leads). Because the long-term leading trends of temperature are now decidedly upward, beginning about the mid 1980's, it is inferred that the long-term consequential trends of the annual frequency of intense hurricanes should now also be upward, having begun near 1990, suggesting that a return to the more active state probably has already occurred. However, because of the anomalous El Nino activity of the early to mid 1990's, the switch from the less active to the more active state essentially went unnoticed (a marked increase in the number of intense hurricanes was not observed until the 1995 and 1996 hurricane seasons, following the end of the anomalous El Nino activity). Presuming that a return to the more active state has, indeed, occurred, one expects the number of seasonal intense hurricanes during the present epoch (continuing through about 2012) to usually be higher than average (i.e., ..


The Ocean and Cryosphere in a Changing Climate

The Ocean and Cryosphere in a Changing Climate

Author: Intergovernmental Panel on Climate Change (IPCC)

Publisher: Cambridge University Press

Published: 2022-04-30

Total Pages: 755

ISBN-13: 9781009157971

DOWNLOAD EBOOK

The Intergovernmental Panel on Climate Change (IPCC) is the leading international body for assessing the science related to climate change. It provides policymakers with regular assessments of the scientific basis of human-induced climate change, its impacts and future risks, and options for adaptation and mitigation. This IPCC Special Report on the Ocean and Cryosphere in a Changing Climate is the most comprehensive and up-to-date assessment of the observed and projected changes to the ocean and cryosphere and their associated impacts and risks, with a focus on resilience, risk management response options, and adaptation measures, considering both their potential and limitations. It brings together knowledge on physical and biogeochemical changes, the interplay with ecosystem changes, and the implications for human communities. It serves policymakers, decision makers, stakeholders, and all interested parties with unbiased, up-to-date, policy-relevant information. This title is also available as Open Access on Cambridge Core.


El Niño During the 1990's

El Niño During the 1990's

Author: Robert M. Wilson

Publisher:

Published: 2000

Total Pages: 16

ISBN-13:

DOWNLOAD EBOOK

Today, El Niño refers to the extreme warming episodes of the globally effective coupled ocean-atmospheric interaction commonly known as ENSO (i.e., "El Nino-Southern Oscillation"). Concerning its observed decadal frequency and severity, El Nino during the 1990's has often been regarded as being anomalous. Results of analysis herein however, appear to mitigate this belief.


Current Topics in Tropical Cyclone Research

Current Topics in Tropical Cyclone Research

Author: Anthony Lupo

Publisher: BoD – Books on Demand

Published: 2020-11-04

Total Pages: 160

ISBN-13: 1838803610

DOWNLOAD EBOOK

This book highlights some of the most recent research in the climatological behavior of tropical cyclones as well as the dynamics, predictability, and character of these storms as derived using remote sensing techniques. Also included in this book is a review of the interaction between tropical cyclones and coastal ocean dynamics in the Northwest Pacific and an evaluation of the performance of CMIP6 models in replicating the current climate using accumulated cyclone energy. The latter demonstrates how the climate may change in the future. This book can be a useful resource for those studying the character of these storms, especially those with the goal of anticipating their future occurrence in both the short and climatological range and their associated hazards.


Attribution of Extreme Weather Events in the Context of Climate Change

Attribution of Extreme Weather Events in the Context of Climate Change

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2016-07-28

Total Pages: 187

ISBN-13: 0309380979

DOWNLOAD EBOOK

As climate has warmed over recent years, a new pattern of more frequent and more intense weather events has unfolded across the globe. Climate models simulate such changes in extreme events, and some of the reasons for the changes are well understood. Warming increases the likelihood of extremely hot days and nights, favors increased atmospheric moisture that may result in more frequent heavy rainfall and snowfall, and leads to evaporation that can exacerbate droughts. Even with evidence of these broad trends, scientists cautioned in the past that individual weather events couldn't be attributed to climate change. Now, with advances in understanding the climate science behind extreme events and the science of extreme event attribution, such blanket statements may not be accurate. The relatively young science of extreme event attribution seeks to tease out the influence of human-cause climate change from other factors, such as natural sources of variability like El Niño, as contributors to individual extreme events. Event attribution can answer questions about how much climate change influenced the probability or intensity of a specific type of weather event. As event attribution capabilities improve, they could help inform choices about assessing and managing risk, and in guiding climate adaptation strategies. This report examines the current state of science of extreme weather attribution, and identifies ways to move the science forward to improve attribution capabilities.