Biophysical Ecology

Biophysical Ecology

Author: D. M. Gates

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 631

ISBN-13: 1461260248

DOWNLOAD EBOOK

The objective of this book is to make analytical methods available to students of ecology. The text deals with concepts of energy exchange, gas exchange, and chemical kinetics involving the interactions of plants and animals with their environments. The first four chapters are designed to show the applications of biophysical ecology in a preliminary, sim plified manner. Chapters 5-10, treating the topics of radiation, convec tion, conduction, and evaporation, are concerned with the physical environment. The spectral properties of radiation and matter are thoroughly described, as well as the geometrical, instantaneous, daily, and annual amounts of both shortwave and longwave radiation. Later chapters give the more elaborate analytical methods necessary for the study of photosynthesis in plants and energy budgets in animals. The final chapter describes the temperature responses of plants and animals. The discipline of biophysical ecology is rapidly growing, and some important topics and references are not included due to limitations of space, cost, and time. The methodology of some aspects of ecology is illustrated by the subject matter of this book. It is hoped that future students of the subject will carry it far beyond its present status. Ideas for advancing the subject matter of biophysical ecology exceed individual capacities for effort, and even today, many investigators in ecology are studying subjects for which they are inadequately prepared. The potential of modern science, in the minds and hands of skilled investigators, to of the interactions of organisms with their advance our understanding environment is enormous.


Perspectives of Biophysical Ecology

Perspectives of Biophysical Ecology

Author: D.M. Gates

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 602

ISBN-13: 3642878105

DOWNLOAD EBOOK

A symposium on biophysical ecology was held at The University of Michigan Biological Station on Douglas Lake August 20-24, 1973. Biophysical ecology is an approach to ecology which uses fundamental principles of physics and chemistry along with mathematics as a tool to understand the interactions between organisms and their environment. It is fundamentally a mechanistic approach to ecology, and as such, it is amenable to theoretical modeling. A theoretical model applied to an organism and its interactions with its environ ment should include all the significant environmental factors, organism properties, and the mechanisms that connect these things together in an appropriate organism response. The purpose of a theoretical model is to use it to explain observed facts and to make predictions beyond the realm of observation which can be verified or denied by further observation. If the predictions are confirmed, the model must be reasonably complete except for second or third-order refinements. If the pre dictions are denied by further observation, one must go back to the basic ideas that entered the model and decide what has been overlooked or even what has been included that perhaps should not have been. Theoretical modeling must always have recourse to experiment in the laboratory and observation in the field. For plants, a theoretical model might be formulated to explain the manner and magnitude by which various environmental factors affect leaf temperature.


Perspectives of Biophysical Ecology

Perspectives of Biophysical Ecology

Author: D.M. Gates

Publisher: Springer

Published: 2012-04-20

Total Pages: 0

ISBN-13: 9783642878121

DOWNLOAD EBOOK

A symposium on biophysical ecology was held at The University of Michigan Biological Station on Douglas Lake August 20-24, 1973. Biophysical ecology is an approach to ecology which uses fundamental principles of physics and chemistry along with mathematics as a tool to understand the interactions between organisms and their environment. It is fundamentally a mechanistic approach to ecology, and as such, it is amenable to theoretical modeling. A theoretical model applied to an organism and its interactions with its environ ment should include all the significant environmental factors, organism properties, and the mechanisms that connect these things together in an appropriate organism response. The purpose of a theoretical model is to use it to explain observed facts and to make predictions beyond the realm of observation which can be verified or denied by further observation. If the predictions are confirmed, the model must be reasonably complete except for second or third-order refinements. If the pre dictions are denied by further observation, one must go back to the basic ideas that entered the model and decide what has been overlooked or even what has been included that perhaps should not have been. Theoretical modeling must always have recourse to experiment in the laboratory and observation in the field. For plants, a theoretical model might be formulated to explain the manner and magnitude by which various environmental factors affect leaf temperature.