Using SQLite

Using SQLite

Author: Jay Kreibich

Publisher: "O'Reilly Media, Inc."

Published: 2010-08-17

Total Pages: 526

ISBN-13: 0596521189

DOWNLOAD EBOOK

Explains how to build database-backed applications for the Web, desktop, embedded systems, and operating systems using SQLite.


Hands-On Image Processing with Python

Hands-On Image Processing with Python

Author: Sandipan Dey

Publisher: Packt Publishing Ltd

Published: 2018-11-30

Total Pages: 483

ISBN-13: 178934185X

DOWNLOAD EBOOK

Explore the mathematical computations and algorithms for image processing using popular Python tools and frameworks. Key FeaturesPractical coverage of every image processing task with popular Python librariesIncludes topics such as pseudo-coloring, noise smoothing, computing image descriptorsCovers popular machine learning and deep learning techniques for complex image processing tasksBook Description Image processing plays an important role in our daily lives with various applications such as in social media (face detection), medical imaging (X-ray, CT-scan), security (fingerprint recognition) to robotics & space. This book will touch the core of image processing, from concepts to code using Python. The book will start from the classical image processing techniques and explore the evolution of image processing algorithms up to the recent advances in image processing or computer vision with deep learning. We will learn how to use image processing libraries such as PIL, scikit-mage, and scipy ndimage in Python. This book will enable us to write code snippets in Python 3 and quickly implement complex image processing algorithms such as image enhancement, filtering, segmentation, object detection, and classification. We will be able to use machine learning models using the scikit-learn library and later explore deep CNN, such as VGG-19 with Keras, and we will also use an end-to-end deep learning model called YOLO for object detection. We will also cover a few advanced problems, such as image inpainting, gradient blending, variational denoising, seam carving, quilting, and morphing. By the end of this book, we will have learned to implement various algorithms for efficient image processing. What you will learnPerform basic data pre-processing tasks such as image denoising and spatial filtering in PythonImplement Fast Fourier Transform (FFT) and Frequency domain filters (e.g., Weiner) in PythonDo morphological image processing and segment images with different algorithmsLearn techniques to extract features from images and match imagesWrite Python code to implement supervised / unsupervised machine learning algorithms for image processingUse deep learning models for image classification, segmentation, object detection and style transferWho this book is for This book is for Computer Vision Engineers, and machine learning developers who are good with Python programming and want to explore details and complexities of image processing. No prior knowledge of the image processing techniques is expected.


DATA ANALYSIS PROJECTS WITH MYSQL, SQLITE, POSTGRESQL, AND SQL SERVER USING PYTHON GUI

DATA ANALYSIS PROJECTS WITH MYSQL, SQLITE, POSTGRESQL, AND SQL SERVER USING PYTHON GUI

Author: Vivian Siahaan

Publisher: BALIGE PUBLISHING

Published: 2022-10-26

Total Pages: 1647

ISBN-13:

DOWNLOAD EBOOK

PROJECT 1: FULL SOURCE CODE: POSTGRESQL AND DATA SCIENCE FOR PROGRAMMERS WITH PYTHON GUI This project uses the PostgreSQL version of MySQL-based Sakila sample database which is a fictitious database designed to represent a DVD rental store. The tables of the database include film, film_category, actor, film_actor, customer, rental, payment and inventory among others. You can download the database from https://dev.mysql.com/doc/sakila/en/. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot case distribution of film release year, film rating, rental duration, and categorize film length; plot rating variable against rental_duration variable in stacked bar plots; plot length variable against rental_duration variable in stacked bar plots; read payment table; plot case distribution of Year, Day, Month, Week, and Quarter of payment; plot which year, month, week, days of week, and quarter have most payment amount; read film list by joining five tables: category, film_category, film_actor, film, and actor; plot case distribution of top 10 and bottom 10 actors; plot which film title have least and most sales; plot which actor have least and most sales; plot which film category have least and most sales; plot case distribution of top 10 and bottom 10 overdue costumers; plot which store have most sales; plot average payment amount by month with mean and EWM; and plot payment amount over June 2005. PROJECT 2: FULL SOURCE CODE: MYSQL FOR STUDENTS AND PROGRAMMERS WITH PYTHON GUI In this project, we provide you with a MySQL version of an Oracle sample database named OT which is based on a global fictitious company that sells computer hardware including storage, motherboard, RAM, video card, and CPU. The company maintains the product information such as name, description standard cost, list price, and product line. It also tracks the inventory information for all products including warehouses where products are available. Because the company operates globally, it has warehouses in various locations around the world. The company records all customer information including name, address, and website. Each customer has at least one contact person with detailed information including name, email, and phone. The company also places a credit limit on each customer to limit the amount that customer can owe. Whenever a customer issues a purchase order, a sales order is created in the database with the pending status. When the company ships the order, the order status becomes shipped. In case the customer cancels an order, the order status becomes canceled. In addition to the sales information, the employee data is recorded with some basic information such as name, email, phone, job title, manager, and hire date. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, and day; the distribution of amount by year, quarter, month, week, day, and hour; the distribution of bottom 10 sales by product, top 10 sales by product, bottom 10 sales by customer, top 10 sales by customer, bottom 10 sales by category, top 10 sales by category, bottom 10 sales by status, top 10 sales by status, bottom 10 sales by customer city, top 10 sales by customer city, bottom 10 sales by customer state, top 10 sales by customer state, average amount by month with mean and EWM, average amount by every month, amount feature over June 2016, amount feature over 2017, and amount payment in all years. PROJECT 3: ZERO TO MASTERY: THE COMPLETE GUIDE TO LEARNING SQLITE AND PYTHON GUI In this project, we provide you with the SQLite version of The Oracle Database Sample Schemas that provides a common platform for examples in each release of the Oracle Database. The sample database is also a good database for practicing with SQL, especially SQLite. The detailed description of the database can be found on: http://luna-ext.di.fc.ul.pt/oracle11g/server.112/e10831/diagrams.htm#insertedID0. The four schemas are a set of interlinked schemas. This set of schemas provides a layered approach to complexity: A simple schema Human Resources (HR) is useful for introducing basic topics. An extension to this schema supports Oracle Internet Directory demos; A second schema, Order Entry (OE), is useful for dealing with matters of intermediate complexity. Many data types are available in this schema, including non-scalar data types; The Online Catalog (OC) subschema is a collection of object-relational database objects built inside the OE schema; The Product Media (PM) schema is dedicated to multimedia data types; The Sales History (SH) schema is designed to allow for demos with large amounts of data. An extension to this schema provides support for advanced analytic processing. The HR schema consists of seven tables: regions, countries, locations, departments, employees, jobs, and job_histories. This book only implements HR schema, since the other schemas will be implemented in the next books. PROJECT 4: FULL SOURCE CODE: SQL SERVER FOR STUDENTS AND DATA SCIENTISTS WITH PYTHON GUI In this project, we provide you with the SQL SERVER version of SQLite sample database named chinook. The chinook sample database is a good database for practicing with SQL, especially PostgreSQL. The detailed description of the database can be found on: https://www.sqlitetutorial.net/sqlite-sample-database/. The sample database consists of 11 tables: The employee table stores employees data such as employee id, last name, first name, etc. It also has a field named ReportsTo to specify who reports to whom; customers table stores customers data; invoices & invoice_items tables: these two tables store invoice data. The invoice table stores invoice header data and the invoice_items table stores the invoice line items data; The artist table stores artists data. It is a simple table that contains only the artist id and name; The album table stores data about a list of tracks. Each album belongs to one artist. However, one artist may have multiple albums; The media_type table stores media types such as MPEG audio and AAC audio files; genre table stores music types such as rock, jazz, metal, etc; The track table stores the data of songs. Each track belongs to one album; playlist & playlist_track tables: The playlist table store data about playlists. Each playlist contains a list of tracks. Each track may belong to multiple playlists. The relationship between the playlist table and track table is many-to-many. The playlist_track table is used to reflect this relationship. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, and day; the distribution of amount by year, quarter, month, week, day, and hour; the bottom/top 10 sales by employee, the bottom/top 10 sales by customer, the bottom/top 10 sales by customer, the bottom/top 10 sales by artist, the bottom/top 10 sales by genre, the bottom/top 10 sales by play list, the bottom/top 10 sales by customer city, the bottom/top 10 sales by customer city, the bottom/top 10 sales by customer city, the payment amount by month with mean and EWM, the average payment amount by every month, and amount payment in all years.


Python GUI For Signal and Image Processing

Python GUI For Signal and Image Processing

Author: Vivian Siahaan

Publisher: SPARTA PUBLISHING

Published: 2019-10-05

Total Pages: 221

ISBN-13:

DOWNLOAD EBOOK

You will learn to create GUI applications using the Qt toolkit. The Qt toolkit, also popularly known as Qt, is a cross-platform application and UI framework developed by Trolltech, which is used to develop GUI applications. You will develop an existing GUI by adding several Line Edit widgets to read input, which are used to set the range and step of the graph (signal). Next, Now, you can use a widget for each graph. Add another Widget from Containers in gui_graphics.ui using Qt Designer. Then, Now, you can use two Widgets, each of which has two canvases. The two canvases has QVBoxLayout in each Widget. Finally, you will apply those Widgets to display the results of signal and image processing techniques.


START FROM SCRATCH DIGITAL IMAGE PROCESSING WITH TKINTER

START FROM SCRATCH DIGITAL IMAGE PROCESSING WITH TKINTER

Author: Vivian Siahaan

Publisher: BALIGE PUBLISHING

Published: 2023-10-21

Total Pages: 490

ISBN-13:

DOWNLOAD EBOOK

"Start from Scratch: Digital Image Processing with Tkinter" is a beginner-friendly guide that delves into the basics of digital image processing using Python and Tkinter, a popular GUI library. The project is divided into distinct modules, each focusing on a specific aspect of image manipulation. The journey begins with an exploration of Image Color Space. Here, readers encounter the Main Form, which serves as the entry point to the application. It provides a user-friendly interface for loading images, selecting color spaces, and visualizing various color channels. The Fundamental Utilities play a crucial role by providing core functionalities like loading images, converting color spaces, and manipulating pixel data. The project also includes forms dedicated to displaying individual color channels and offering insights into the current color space through histograms. The Plotting Utilities module facilitates the creation of visual representations such as plots and graphs, enhancing the user's understanding of color spaces. Moving on, the Image Transformation section introduces readers to techniques like the Fast Fourier Transform (FFT). The Fast Fourier Transform Utilities module enables the implementation of FFT algorithms for converting images from spatial to frequency domains. A corresponding form allows users to view images in the frequency domain, with additional adjustments made to the plotting utilities for effective visualization. In the context of Discrete Cosine Transform (DCT), readers gain insights into algorithms and functions for transforming images. The Form for Discrete Cosine Transform aids in visualizing images in the DCT domain, while the plotting utilities are modified to accommodate these transformed images. The Discrete Sine Transform (DST) section introduces readers to DST algorithms and their role in image transformation. A dedicated form for visualizing images in the DST domain is provided, and the plotting utilities are further extended to handle these transformations effectively. Moving Average Smoothing is another critical aspect covered in the project. The Filter2D Utilities facilitate the application of moving average smoothing techniques. Additionally, metrics utilities enable the assessment of the smoothing process, with forms available for displaying both metrics and the smoothed images. Next, the project addresses Exponential Moving Average techniques, modifying the existing utilities to accommodate this specific approach. Similarly, forms for visualizing results and metrics are provided. Readers are then introduced to techniques like Median Filtering, Savitzky-Golay Filtering, and Wiener Filtering. The Filter2D Utilities are adapted to facilitate these filtering methods, and metrics utilities are employed to assess the effectiveness of each technique. Forms dedicated to each filtering method provide a platform for visualizing the results. The final section of the project explores techniques such as Total Variation Denoising, Non-Local Means Denoising, and PCA Denoising. The Filter2D Utilities are once again modified to support these denoising techniques. Metrics utilities are employed to evaluate the denoising process, and dedicated forms offer visualization capabilities. By breaking down the project into these modules, readers can systematically grasp the fundamentals of digital image processing, gradually building their skills from one concept to the next. Each section provides hands-on experience and practical knowledge, making it an ideal starting point for beginners in image processing.


LEARN FROM SCRATCH SIGNAL AND IMAGE PROCESSING WITH PYTHON GUI

LEARN FROM SCRATCH SIGNAL AND IMAGE PROCESSING WITH PYTHON GUI

Author: Vivian Siahaan

Publisher: BALIGE PUBLISHING

Published: 2023-06-14

Total Pages: 372

ISBN-13:

DOWNLOAD EBOOK

In this book, you will learn how to use OpenCV, NumPy library and other libraries to perform signal processing, image processing, object detection, and feature extraction with Python GUI (PyQt). You will learn how to filter signals, detect edges and segments, and denoise images with PyQt. You will also learn how to detect objects (face, eye, and mouth) using Haar Cascades and how to detect features on images using Harris Corner Detection, Shi-Tomasi Corner Detector, Scale-Invariant Feature Transform (SIFT), and Features from Accelerated Segment Test (FAST). In Chapter 1, you will learn: Tutorial Steps To Create A Simple GUI Application, Tutorial Steps to Use Radio Button, Tutorial Steps to Group Radio Buttons, Tutorial Steps to Use CheckBox Widget, Tutorial Steps to Use Two CheckBox Groups, Tutorial Steps to Understand Signals and Slots, Tutorial Steps to Convert Data Types, Tutorial Steps to Use Spin Box Widget, Tutorial Steps to Use ScrollBar and Slider, Tutorial Steps to Use List Widget, Tutorial Steps to Select Multiple List Items in One List Widget and Display It in Another List Widget, Tutorial Steps to Insert Item into List Widget, Tutorial Steps to Use Operations on Widget List, Tutorial Steps to Use Combo Box, Tutorial Steps to Use Calendar Widget and Date Edit, and Tutorial Steps to Use Table Widget. In Chapter 2, you will learn: Tutorial Steps To Create A Simple Line Graph, Tutorial Steps To Create A Simple Line Graph in Python GUI, Tutorial Steps To Create A Simple Line Graph in Python GUI: Part 2, Tutorial Steps To Create Two or More Graphs in the Same Axis, Tutorial Steps To Create Two Axes in One Canvas, Tutorial Steps To Use Two Widgets, Tutorial Steps To Use Two Widgets, Each of Which Has Two Axes, Tutorial Steps To Use Axes With Certain Opacity Levels, Tutorial Steps To Choose Line Color From Combo Box, Tutorial Steps To Calculate Fast Fourier Transform, Tutorial Steps To Create GUI For FFT, Tutorial Steps To Create GUI For FFT With Some Other Input Signals, Tutorial Steps To Create GUI For Noisy Signal, Tutorial Steps To Create GUI For Noisy Signal Filtering, and Tutorial Steps To Create GUI For Wav Signal Filtering. In Chapter 3, you will learn: Tutorial Steps To Convert RGB Image Into Grayscale, Tutorial Steps To Convert RGB Image Into YUV Image, Tutorial Steps To Convert RGB Image Into HSV Image, Tutorial Steps To Filter Image, Tutorial Steps To Display Image Histogram, Tutorial Steps To Display Filtered Image Histogram, Tutorial Steps To Filter Image With CheckBoxes, Tutorial Steps To Implement Image Thresholding, and Tutorial Steps To Implement Adaptive Image Thresholding. In Chapter 4, you will learn: Tutorial Steps To Generate And Display Noisy Image, Tutorial Steps To Implement Edge Detection On Image, Tutorial Steps To Implement Image Segmentation Using Multiple Thresholding and K-Means Algorithm, and Tutorial Steps To Implement Image Denoising. In Chapter 5, you will learn: Tutorial Steps To Detect Face, Eye, and Mouth Using Haar Cascades, Tutorial Steps To Detect Face Using Haar Cascades with PyQt, Tutorial Steps To Detect Eye, and Mouth Using Haar Cascades with PyQt, and Tutorial Steps To Extract Detected Objects. In Chapter 6, you will learn: Tutorial Steps To Detect Image Features Using Harris Corner Detection, Tutorial Steps To Detect Image Features Using Shi-Tomasi Corner Detection, Tutorial Steps To Detect Features Using Scale-Invariant Feature Transform (SIFT), and Tutorial Steps To Detect Features Using Features from Accelerated Segment Test (FAST). You can download the XML files from https://viviansiahaan.blogspot.com/2023/06/learn-from-scratch-signal-and-image.html.


Python Image Processing Cookbook

Python Image Processing Cookbook

Author: Sandipan Dey

Publisher:

Published: 2020-04-17

Total Pages: 438

ISBN-13: 9781789537147

DOWNLOAD EBOOK

Advancements in wireless devices and mobile technology have enabled the acquisition of a tremendous amount of graphics, pictures, and videos. Through cutting edge recipes, this book provides coverage on tools, algorithms, and analysis for image processing. This book provides solutions addressing the challenges and complex tasks of image processing.


DIGITAL VIDEO PROCESSING PROJECTS USING PYTHON AND TKINTER

DIGITAL VIDEO PROCESSING PROJECTS USING PYTHON AND TKINTER

Author: Vivian Siahaan

Publisher: BALIGE PUBLISHING

Published: 2024-03-23

Total Pages: 195

ISBN-13:

DOWNLOAD EBOOK

The first project is a video player application with an additional feature to compute and display the MD5 hash of each frame in a video. The user interface is built using Tkinter, a Python GUI toolkit, providing buttons for opening a video file, playing, pausing, and stopping the video playback. Upon opening a video file, the application displays metadata such as filename, duration, resolution, FPS, and codec information in a table. The video can be navigated using a slider to seek to a specific time point. When the video is played, the application iterates through each frame, extracts it from the video clip, calculates its MD5 hash, and displays the frame along with its histogram and MD5 hash. The histogram represents the pixel intensity distribution of each color channel (red, green, blue) in the frame. The computed MD5 hash for each frame is displayed in a label below the video frame. Additionally, the frame hash along with its index is saved to a text file for further analysis or verification purposes. The class encapsulates the functionality of the application, providing methods for opening a video file, playing and controlling video playback, updating metadata, computing frame histogram, plotting histogram, calculating MD5 hash for each frame, and saving frame hashes to a file. The main function initializes the Tkinter root window, instantiates the class, and starts the Tkinter event loop to handle user interactions and update the GUI accordingly. The second project is a video player application with additional features for frame extraction and visualization of RGB histograms for each frame. Developed using Tkinter, a Python GUI toolkit, the application provides functionalities such as opening a video file, playing, pausing, and stopping video playback. The user interface includes buttons for controlling video playback, a combobox for selecting zoom scale, an entry for specifying a time point to jump to, and buttons for frame extraction and opening another instance of the application. Upon opening a video file, the application loads it using the imageio library and displays the frames in a canvas. Users can play, pause, and stop the video using dedicated buttons. The zoom scale can be adjusted, and the video can be navigated using scrollbar or time entry. Additionally, users can extract a specific frame by entering its frame number, which opens a new window displaying the extracted frame along with its RGB histograms and MD5 hash value. The class encapsulates the application's functionalities, including methods for opening a video file, playing/pausing/stopping video, updating zoom scale, displaying frames, handling mouse events for dragging and scrolling, jumping to a specified time, and extracting frames. The main function initializes the Tkinter root window and starts the application's event loop to handle user interactions and update the GUI accordingly. Users can also open multiple instances of the application simultaneously to work with different video files concurrently. The third project is a GUI application built with Tkinter for calculating hash values of video frames and displaying them in a listbox. The interface consists of different frames for video display and hash values, along with buttons for controlling video playback, calculating hashes, saving hash values to a file, and opening a new instance of the application. Users can open a video file using the "Open Video" button, after which they can play, pause, or stop the video using corresponding buttons. Upon opening a video file, the application reads frames from the video capture and displays them in the designated frame. Users can interact with the video using playback buttons to control the video's flow. Hash values for each frame are calculated using various hashing algorithms such as MD5, SHA-1, SHA-256, and others. These hash values are then displayed in the listbox, allowing users to view the hash values corresponding to each algorithm. Additionally, users can save the calculated hash values to a text file by clicking the "Save Hashes" button, providing a convenient way to store and analyze the hash data. Lastly, users can open multiple instances of the application simultaneously by clicking the "Open New Instance" button, facilitating concurrent processing of different video files. The fourth project is a GUI application developed using Tkinter for analyzing video frames through frame hashing and histogram visualization. The interface presents a canvas for displaying the video frames along with control buttons for video playback, frame extraction, and zoom control. Users can open a video file using the "Open Video" button, and the application provides functionality to play, pause, and stop the video playback. Additionally, users can jump to specific time points within the video using the time entry field and "Jump to Time" button. Upon extracting a frame, the application opens a new window displaying the selected frame along with its histogram and multiple hash values calculated using various algorithms such as MD5, SHA-1, SHA-256, and others. The histogram visualization presents the distribution of pixel values across the RGB channels, aiding in the analysis of color composition within the frame. The hash values are displayed in a listbox within the frame extraction window, providing users with comprehensive information about the frame's content and characteristics. Furthermore, users can open multiple instances of the application simultaneously, enabling concurrent analysis of different video files. The fifth project implements a video player application with edge detection capabilities using various algorithms. The application is designed using the Tkinter library for the graphical user interface (GUI). Upon execution, the user is presented with a window containing control buttons and panels for displaying the video and extracted frames. The main functionalities of the application include opening a video file, playing, pausing, and stopping the video playback. Additionally, users can jump to a specific time in the video, extract frames, and open another instance of the video player application. The video playback is displayed on a canvas, allowing for zooming in and out using a combobox to adjust the scale. One of the key features of this application is the ability to perform edge detection on frames extracted from the video. When a frame is extracted, the application displays the original frame alongside its edge detection result using various algorithms such as Canny, Sobel, Prewitt, Laplacian, Scharr, Roberts, FreiChen, Kirsch, Robinson, Gaussian, or no edge detection. Histogram plots for each RGB channel of the frame are also displayed, along with hash values computed using different hashing algorithms for integrity verification. The edge detection result and histogram plots are updated dynamically based on the selected edge detection algorithm. Overall, this application provides a convenient platform for visualizing video content and performing edge detection analysis on individual frames, making it useful for tasks such as video processing, computer vision, and image analysis. The sixth project is a Python application built using the Tkinter library for creating a graphical user interface (GUI) to play videos and apply various filtering techniques to individual frames. The application allows users to open video files in common formats such as MP4, AVI, and MKV. Once a video is opened, users can play, pause, stop, and jump to specific times within the video. The GUI consists of two main panels: one for displaying the video and another for control buttons. The video panel contains a canvas where the frames of the video are displayed. Users can zoom in or out on the video frames using a combobox, and they can also scroll horizontally through the video using a scrollbar. Control buttons such as play/pause, stop, extract frame, and open another video player are provided in the control panel. When a frame is extracted, the application opens a new window displaying the extracted frame along with options to apply various filtering methods. These methods include Gaussian blur, mean blur, median blur, bilateral filtering, non-local means denoising, anisotropic diffusion, total variation denoising, Wiener filter, adaptive thresholding, and wavelet transform. Users can select a filtering method from a dropdown menu, and the filtered result along with the histogram and hash values of the frame are displayed in real-time. The application also provides functionality to open another instance of the video player, allowing users to work with multiple videos simultaneously. Overall, this project provides a user-friendly interface for playing videos and applying filtering techniques to individual frames, making it useful for tasks such as video processing, analysis, and editing.


POSTGRESQL FOR JAVA GUI: Database, Cryptography, and Image Processing

POSTGRESQL FOR JAVA GUI: Database, Cryptography, and Image Processing

Author: Vivian Siahaan

Publisher: SPARTA PUBLISHING

Published: 2019-09-01

Total Pages: 490

ISBN-13:

DOWNLOAD EBOOK

In this book, you will learn how to build from scratch a criminal records management database system using Java/PostgreSQL. All Java code for cryptography and digital image processing in this book is Native Java. Intentionally not to rely on external libraries, so that readers know in detail the process of extracting digital images from scratch in Java. There are only three external libraries used in this book: Connector / J to facilitate Java to PostgreSQL connections, JCalendar to display calendar controls, and JFreeChart to display graphics. Digital image techniques to extract image features used in this book are grascaling, sharpening, invertering, blurring, dilation, erosion, closing, opening, vertical prewitt, horizontal prewitt, Laplacian, horizontal sobel, and vertical sobel. For readers, you can develop it to store other advanced image features based on descriptors such as SIFT and others for developing descriptor based matching. In the first chapter, you will learn: How to install NetBeans, JDK 11, and the PostgreSQL connector; How to integrate external libraries into projects; How the basic PostgreSQL commands are used; How to query statements to create databases, create tables, fill tables, and manipulate table contents is done. In the second chapter, you will learn querying data from the postgresql using jdbc including establishing a database connection, creating a statement object, executing the query, processing the resultset object, querying data using a statement that returns multiple rows, querying data using a statement that has parameters, inserting data into a table using jdbc, updating data in postgresql database using jdbc, calling postgresql stored function using jdbc, deleting data from a postgresql table using jdbc, and postgresql jdbc transaction. In the second chapter, you will learn the basics of cryptography using Java. Here, you will learn how to write a Java program to count Hash, MAC (Message Authentication Code), store keys in a KeyStore, generate PrivateKey and PublicKey, encrypt / decrypt data, and generate and verify digital prints. In the third chapter, you will learn how to create and store salt passwords and verify them. You will create a Login table. In this case, you will see how to create a Java GUI using NetBeans to implement it. In addition to the Login table, in this chapter you will also create a Client table. In the case of the Client table, you will learn how to generate and save public and private keys into a database. You will also learn how to encrypt / decrypt data and save the results into a database. In the fourth chapter, you will create an Account table. This account table has the following ten fields: account_id (primary key), client_id (primarykey), account_number, account_date, account_type, plain_balance, cipher_balance, decipher_balance, digital_signature, and signature_verification. In this case, you will learn how to implement generating and verifying digital prints and storing the results into a database. In the fifth chapter, you create a table with the name of the Account, which has ten columns: account_id (primary key), client_id (primarykey), account_number, account_date, account_type, plain_balance, cipher_balance, decipher_balance, digital_signature, and signature_verification. In the sixth chapter, you will create a Client_Data table, which has the following seven fields: client_data_id (primary key), account_id (primary_key), birth_date, address, mother_name, telephone, and photo_path. In the seventh chapter, you will be taught how to create Crime database and its tables. In eighth chapter, you will be taught how to extract image features, utilizing BufferedImage class, in Java GUI. In the nineth chapter, you will be taught to create Java GUI to view, edit, insert, and delete Suspect table data. This table has eleven columns: suspect_id (primary key), suspect_name, birth_date, case_date, report_date, suspect_ status, arrest_date, mother_name, address, telephone, and photo. In the tenth chapter, you will be taught to create Java GUI to view, edit, insert, and delete Feature_Extraction table data. This table has eight columns: feature_id (primary key), suspect_id (foreign key), feature1, feature2, feature3, feature4, feature5, and feature6. In the eleventh chapter, you will add two tables: Police_Station and Investigator. These two tables will later be joined to Suspect table through another table, File_Case, which will be built in the seventh chapter. The Police_Station has six columns: police_station_id (primary key), location, city, province, telephone, and photo. The Investigator has eight columns: investigator_id (primary key), investigator_name, rank, birth_date, gender, address, telephone, and photo. Here, you will design a Java GUI to display, edit, fill, and delete data in both tables. In the twelfth chapter, you will add two tables: Victim and File_Case. The File_Case table will connect four other tables: Suspect, Police_Station, Investigator and Victim. The Victim table has nine columns: victim_id (primary key), victim_name, crime_type, birth_date, crime_date, gender, address, telephone, and photo. The File_Case has seven columns: file_case_id (primary key), suspect_id (foreign key), police_station_id (foreign key), investigator_id (foreign key), victim_id (foreign key), status, and description. Here, you will also design a Java GUI to display, edit, fill, and delete data in both tables. Finally, this book is hopefully useful for you.


Programming Computer Vision with Python

Programming Computer Vision with Python

Author: Jan Erik Solem

Publisher: "O'Reilly Media, Inc."

Published: 2012-06-19

Total Pages: 262

ISBN-13: 1449341934

DOWNLOAD EBOOK

If you want a basic understanding of computer vision’s underlying theory and algorithms, this hands-on introduction is the ideal place to start. You’ll learn techniques for object recognition, 3D reconstruction, stereo imaging, augmented reality, and other computer vision applications as you follow clear examples written in Python. Programming Computer Vision with Python explains computer vision in broad terms that won’t bog you down in theory. You get complete code samples with explanations on how to reproduce and build upon each example, along with exercises to help you apply what you’ve learned. This book is ideal for students, researchers, and enthusiasts with basic programming and standard mathematical skills. Learn techniques used in robot navigation, medical image analysis, and other computer vision applications Work with image mappings and transforms, such as texture warping and panorama creation Compute 3D reconstructions from several images of the same scene Organize images based on similarity or content, using clustering methods Build efficient image retrieval techniques to search for images based on visual content Use algorithms to classify image content and recognize objects Access the popular OpenCV library through a Python interface