Handbook of Research on Data Science for Effective Healthcare Practice and Administration

Handbook of Research on Data Science for Effective Healthcare Practice and Administration

Author: Noughabi, Elham Akhond Zadeh

Publisher: IGI Global

Published: 2017-07-20

Total Pages: 574

ISBN-13: 1522525165

DOWNLOAD EBOOK

Data science has always been an effective way of extracting knowledge and insights from information in various forms. One industry that can utilize the benefits from the advances in data science is the healthcare field. The Handbook of Research on Data Science for Effective Healthcare Practice and Administration is a critical reference source that overviews the state of data analysis as it relates to current practices in the health sciences field. Covering innovative topics such as linear programming, simulation modeling, network theory, and predictive analytics, this publication is recommended for all healthcare professionals, graduate students, engineers, and researchers that are seeking to expand their knowledge of efficient techniques for information analysis in the healthcare professions.


Data Science for Healthcare

Data Science for Healthcare

Author: Sergio Consoli

Publisher: Springer

Published: 2019-02-23

Total Pages: 367

ISBN-13: 3030052494

DOWNLOAD EBOOK

This book seeks to promote the exploitation of data science in healthcare systems. The focus is on advancing the automated analytical methods used to extract new knowledge from data for healthcare applications. To do so, the book draws on several interrelated disciplines, including machine learning, big data analytics, statistics, pattern recognition, computer vision, and Semantic Web technologies, and focuses on their direct application to healthcare. Building on three tutorial-like chapters on data science in healthcare, the following eleven chapters highlight success stories on the application of data science in healthcare, where data science and artificial intelligence technologies have proven to be very promising. This book is primarily intended for data scientists involved in the healthcare or medical sector. By reading this book, they will gain essential insights into the modern data science technologies needed to advance innovation for both healthcare businesses and patients. A basic grasp of data science is recommended in order to fully benefit from this book.


Data Science for Effective Healthcare Systems

Data Science for Effective Healthcare Systems

Author: Hari Singh

Publisher: CRC Press

Published: 2022-07-27

Total Pages: 275

ISBN-13: 1000618854

DOWNLOAD EBOOK

Data Science for Effective Healthcare Systems has a prime focus on the importance of data science in the healthcare domain. Various applications of data science in the health care domain have been studied to find possible solutions. In this period of COVID-19 pandemic data science and allied areas plays a vital role to deal with various aspect of health care. Image processing, detection & prevention from COVID-19 virus, drug discovery, early prediction, and prevention of diseases are some thrust areas where data science has proven to be indispensable. Key Features: The book offers comprehensive coverage of the most essential topics, including: Big Data Analytics, Applications & Challenges in Healthcare Descriptive, Predictive and Prescriptive Analytics in Healthcare Artificial Intelligence, Machine Learning, Deep Learning and IoT in Healthcare Data Science in Covid-19, Diabetes, Coronary Heart Diseases, Breast Cancer, Brain Tumor The aim of this book is also to provide the future scope of these technologies in the health care domain. Last but not the least, this book will surely benefit research scholar, persons associated with healthcare, faculty, research organizations, and students to get insights into these emerging technologies in the healthcare domain.


Leveraging Data Science for Global Health

Leveraging Data Science for Global Health

Author: Leo Anthony Celi

Publisher: Springer Nature

Published: 2020-07-31

Total Pages: 471

ISBN-13: 3030479943

DOWNLOAD EBOOK

This open access book explores ways to leverage information technology and machine learning to combat disease and promote health, especially in resource-constrained settings. It focuses on digital disease surveillance through the application of machine learning to non-traditional data sources. Developing countries are uniquely prone to large-scale emerging infectious disease outbreaks due to disruption of ecosystems, civil unrest, and poor healthcare infrastructure – and without comprehensive surveillance, delays in outbreak identification, resource deployment, and case management can be catastrophic. In combination with context-informed analytics, students will learn how non-traditional digital disease data sources – including news media, social media, Google Trends, and Google Street View – can fill critical knowledge gaps and help inform on-the-ground decision-making when formal surveillance systems are insufficient.


Data Analytics in Biomedical Engineering and Healthcare

Data Analytics in Biomedical Engineering and Healthcare

Author: Kun Chang Lee

Publisher: Academic Press

Published: 2020-10-18

Total Pages: 298

ISBN-13: 0128193158

DOWNLOAD EBOOK

Data Analytics in Biomedical Engineering and Healthcare explores key applications using data analytics, machine learning, and deep learning in health sciences and biomedical data. The book is useful for those working with big data analytics in biomedical research, medical industries, and medical research scientists. The book covers health analytics, data science, and machine and deep learning applications for biomedical data, covering areas such as predictive health analysis, electronic health records, medical image analysis, computational drug discovery, and genome structure prediction using predictive modeling. Case studies demonstrate big data applications in healthcare using the MapReduce and Hadoop frameworks. - Examines the development and application of data analytics applications in biomedical data - Presents innovative classification and regression models for predicting various diseases - Discusses genome structure prediction using predictive modeling - Shows readers how to develop clinical decision support systems - Shows researchers and specialists how to use hybrid learning for better medical diagnosis, including case studies of healthcare applications using the MapReduce and Hadoop frameworks


Artificial Intelligence in Healthcare

Artificial Intelligence in Healthcare

Author: Adam Bohr

Publisher: Academic Press

Published: 2020-06-21

Total Pages: 385

ISBN-13: 0128184396

DOWNLOAD EBOOK

Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data


Demystifying Big Data and Machine Learning for Healthcare

Demystifying Big Data and Machine Learning for Healthcare

Author: Prashant Natarajan

Publisher: CRC Press

Published: 2017-02-15

Total Pages: 227

ISBN-13: 1315389304

DOWNLOAD EBOOK

Healthcare transformation requires us to continually look at new and better ways to manage insights – both within and outside the organization today. Increasingly, the ability to glean and operationalize new insights efficiently as a byproduct of an organization’s day-to-day operations is becoming vital to hospitals and health systems ability to survive and prosper. One of the long-standing challenges in healthcare informatics has been the ability to deal with the sheer variety and volume of disparate healthcare data and the increasing need to derive veracity and value out of it. Demystifying Big Data and Machine Learning for Healthcare investigates how healthcare organizations can leverage this tapestry of big data to discover new business value, use cases, and knowledge as well as how big data can be woven into pre-existing business intelligence and analytics efforts. This book focuses on teaching you how to: Develop skills needed to identify and demolish big-data myths Become an expert in separating hype from reality Understand the V’s that matter in healthcare and why Harmonize the 4 C’s across little and big data Choose data fi delity over data quality Learn how to apply the NRF Framework Master applied machine learning for healthcare Conduct a guided tour of learning algorithms Recognize and be prepared for the future of artificial intelligence in healthcare via best practices, feedback loops, and contextually intelligent agents (CIAs) The variety of data in healthcare spans multiple business workflows, formats (structured, un-, and semi-structured), integration at point of care/need, and integration with existing knowledge. In order to deal with these realities, the authors propose new approaches to creating a knowledge-driven learning organization-based on new and existing strategies, methods and technologies. This book will address the long-standing challenges in healthcare informatics and provide pragmatic recommendations on how to deal with them.


Semantic Web for Effective Healthcare Systems

Semantic Web for Effective Healthcare Systems

Author: Vishal Jain

Publisher: John Wiley & Sons

Published: 2021-11-12

Total Pages: 352

ISBN-13: 1119764157

DOWNLOAD EBOOK

SEMANTIC WEB FOR EFFECTIVE HEALTHCARE SYSTEMS The book summarizes the trends and current research advances in web semantics, delineating the existing tools, techniques, methodologies, and research solutions Semantic Web technologies have the opportunity to transform the way healthcare providers utilize technology to gain insights and knowledge from their data and make treatment decisions. Both Big Data and Semantic Web technologies can complement each other to address the challenges and add intelligence to healthcare management systems. The aim of this book is to analyze the current status on how the semantic web is used to solve health data integration and interoperability problems, and how it provides advanced data linking capabilities that can improve search and retrieval of medical data. Chapters analyze the tools and approaches to semantic health data analysis and knowledge discovery. The book discusses the role of semantic technologies in extracting and transforming healthcare data before storing it in repositories. It also discusses different approaches for integrating heterogeneous healthcare data. This innovative book offers: The first of its kind and highlights only the ontology driven information retrieval mechanisms and techniques being applied to healthcare as well as clinical information systems; Presents a comprehensive examination of the emerging research in areas of the semantic web; Discusses studies on new research areas including ontological engineering, semantic annotation and semantic sentiment analysis; Helps readers understand key concepts in semantic web applications for the biomedical engineering and healthcare fields; Includes coverage of key application areas of the semantic web. Audience: Researchers and graduate students in computer science, biomedical engineering, electronic and software engineering, as well as industry scientific researchers, clinicians, and systems managers in biomedical fields.


How Data Science Is Transforming Health Care

How Data Science Is Transforming Health Care

Author: Tim O'Reilly

Publisher: "O'Reilly Media, Inc."

Published: 2012-08-24

Total Pages: 12

ISBN-13: 1449344976

DOWNLOAD EBOOK

In the early days of the 20th century, department store magnate JohnWanamaker famously said, "I know that half of my advertising doesn'twork. The problem is that I don't know which half." That remainedbasically true until Google transformed advertising with AdSense basedon new uses of data and analysis. The same might be said about healthcare and it's poised to go through a similar transformation as newtools, techniques, and data sources come on line. Soon we'll makepolicy and resource decisions based on much better understanding ofwhat leads to the best outcomes, and we'll make medical decisionsbased on a patient's specific biology. The result will be betterhealth at less cost. This paper explores how data analysis will help us structure thebusiness of health care more effectively around outcomes, and how itwill transform the practice of medicine by personalizing for eachspecific patient.


Data Analytics in Medicine

Data Analytics in Medicine

Author: Information Resources Management Association

Publisher: Medical Information Science Reference

Published: 2019-11-18

Total Pages: 2250

ISBN-13: 9781799812043

DOWNLOAD EBOOK

""This book examines practical applications of healthcare analytics for improved patient care, resource allocation, and medical performance, as well as for diagnosing, predicting, and identifying at-risk populations"--