Data Mining IV

Data Mining IV

Author: Nelson F. F. Ebecken

Publisher: WIT Press (UK)

Published: 2004

Total Pages: 696

ISBN-13:

DOWNLOAD EBOOK

Sixty-three papers from a December 2003 conference describe recent advances in data mining problems, encompassing both original research results and practical development experience. The goal is to develop algorithms and data structures that facilitate analysis of large amounts of data. Contributors from academia and industry cover such diverse areas as machine learning, databases, statistics, knowledge acquisitions, data visualization, and knowledge-based systems. Papers are organized in sections on data and text mining, clustering, categorization, CRM, case studies, post-processing and knowledge evaluation, genomics and bioinformatics, novel applications, and scalable algorithms and high- performance platforms. There is no subject index. The US office of WIT Press is Computational Mechanics. Annotation : 2004 Book News, Inc., Portland, OR (booknews.com).


Data Mining

Data Mining

Author: Ian H. Witten

Publisher: Morgan Kaufmann

Published: 2016-10-01

Total Pages: 655

ISBN-13: 0128043571

DOWNLOAD EBOOK

Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches. Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research. Please visit the book companion website at https://www.cs.waikato.ac.nz/~ml/weka/book.html. It contains - Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book - Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book - Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc. - Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects - Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods - Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface - Includes open-access online courses that introduce practical applications of the material in the book


Data Mining and Machine Learning

Data Mining and Machine Learning

Author: Mohammed J. Zaki

Publisher: Cambridge University Press

Published: 2020-01-30

Total Pages: 779

ISBN-13: 1108473989

DOWNLOAD EBOOK

New to the second edition of this advanced text are several chapters on regression, including neural networks and deep learning.


Principles of Data Mining

Principles of Data Mining

Author: Max Bramer

Publisher: Springer

Published: 2016-11-09

Total Pages: 530

ISBN-13: 1447173074

DOWNLOAD EBOOK

This book explains and explores the principal techniques of Data Mining, the automatic extraction of implicit and potentially useful information from data, which is increasingly used in commercial, scientific and other application areas. It focuses on classification, association rule mining and clustering. Each topic is clearly explained, with a focus on algorithms not mathematical formalism, and is illustrated by detailed worked examples. The book is written for readers without a strong background in mathematics or statistics and any formulae used are explained in detail. It can be used as a textbook to support courses at undergraduate or postgraduate levels in a wide range of subjects including Computer Science, Business Studies, Marketing, Artificial Intelligence, Bioinformatics and Forensic Science. As an aid to self study, this book aims to help general readers develop the necessary understanding of what is inside the 'black box' so they can use commercial data mining packages discriminatingly, as well as enabling advanced readers or academic researchers to understand or contribute to future technical advances in the field. Each chapter has practical exercises to enable readers to check their progress. A full glossary of technical terms used is included. This expanded third edition includes detailed descriptions of algorithms for classifying streaming data, both stationary data, where the underlying model is fixed, and data that is time-dependent, where the underlying model changes from time to time - a phenomenon known as concept drift.


Handbook of Statistical Analysis and Data Mining Applications

Handbook of Statistical Analysis and Data Mining Applications

Author: Ken Yale

Publisher: Elsevier

Published: 2017-11-09

Total Pages: 824

ISBN-13: 0124166458

DOWNLOAD EBOOK

Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications


Data Mining III

Data Mining III

Author: A. Zanasi

Publisher: WIT Press (UK)

Published: 2002

Total Pages: 1042

ISBN-13:

DOWNLOAD EBOOK

Data mining brings together techniques from machine learning, pattern recognition, statistics, databases, linguistics and visualization in order to extract information from large databases. Originally principally concerned with behavioural applications, such as the understanding of customer behaviour, its scope has now been widened with the introduction of Text Mining techniques. Areas now encompassed by data mining include military, market, and competitive intelligence applications, taxonomies and internet search techniques, and knowledge management applications.


Fuzzy Systems and Data Mining IV

Fuzzy Systems and Data Mining IV

Author: A.J. Tallón-Ballesteros

Publisher: IOS Press

Published: 2018-11-06

Total Pages: 990

ISBN-13: 1614999279

DOWNLOAD EBOOK

Big Data Analytics is on the rise in the last years of the current decade. Data are overwhelming the computation capacity of high performance servers. Cloud, grid, edge and fog computing are a few examples of the current hype. Computational Intelligence offers two faces to deal with the development of models: on the one hand, the crisp approach, which considers for every variable an exact value and, on the other hand, the fuzzy focus, which copes with values between two boundaries. This book presents 114 papers from the 4th International Conference on Fuzzy Systems and Data Mining (FSDM 2018), held in Bangkok, Thailand, from 16 to 19 November 2018. All papers were carefully reviewed by program committee members, who took into consideration the breadth and depth of the research topics that fall within the scope of FSDM. The acceptance rate was 32.85% . Offering a state-of-the-art overview of fuzzy systems and data mining, the publication will be of interest to all those whose work involves data science.


Data Mining: Concepts and Techniques

Data Mining: Concepts and Techniques

Author: Jiawei Han

Publisher: Elsevier

Published: 2011-06-09

Total Pages: 740

ISBN-13: 0123814804

DOWNLOAD EBOOK

Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data


Mining of Massive Datasets

Mining of Massive Datasets

Author: Jure Leskovec

Publisher: Cambridge University Press

Published: 2014-11-13

Total Pages: 480

ISBN-13: 1107077230

DOWNLOAD EBOOK

Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets.