Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques

Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques

Author: Evangelos Triantaphyllou

Publisher: Springer Science & Business Media

Published: 2006-09-10

Total Pages: 784

ISBN-13: 0387342966

DOWNLOAD EBOOK

This book outlines the core theory and practice of data mining and knowledge discovery (DM & KD) examining theoretical foundations for various methods, and presenting an array of examples, many drawn from real-life applications. Most theoretical developments are accompanied by extensive empirical analysis, offering a deep insight into both theoretical and practical aspects of the subject. The book presents the combined research experiences of 40 expert contributors of world renown.


Data Mining

Data Mining

Author: Krzysztof J. Cios

Publisher: Springer Science & Business Media

Published: 2007-10-05

Total Pages: 601

ISBN-13: 0387367950

DOWNLOAD EBOOK

This comprehensive textbook on data mining details the unique steps of the knowledge discovery process that prescribes the sequence in which data mining projects should be performed, from problem and data understanding through data preprocessing to deployment of the results. This knowledge discovery approach is what distinguishes Data Mining from other texts in this area. The book provides a suite of exercises and includes links to instructional presentations. Furthermore, it contains appendices of relevant mathematical material.


Data Mining and Knowledge Discovery via Logic-Based Methods

Data Mining and Knowledge Discovery via Logic-Based Methods

Author: Evangelos Triantaphyllou

Publisher: Springer Science & Business Media

Published: 2010-06-08

Total Pages: 371

ISBN-13: 144191630X

DOWNLOAD EBOOK

The importance of having ef cient and effective methods for data mining and kn- ledge discovery (DM&KD), to which the present book is devoted, grows every day and numerous such methods have been developed in recent decades. There exists a great variety of different settings for the main problem studied by data mining and knowledge discovery, and it seems that a very popular one is formulated in terms of binary attributes. In this setting, states of nature of the application area under consideration are described by Boolean vectors de ned on some attributes. That is, by data points de ned in the Boolean space of the attributes. It is postulated that there exists a partition of this space into two classes, which should be inferred as patterns on the attributes when only several data points are known, the so-called positive and negative training examples. The main problem in DM&KD is de ned as nding rules for recognizing (cl- sifying) new data points of unknown class, i. e. , deciding which of them are positive and which are negative. In other words, to infer the binary value of one more attribute, called the goal or class attribute. To solve this problem, some methods have been suggested which construct a Boolean function separating the two given sets of positive and negative training data points.


Mathematical Methods for Knowledge Discovery and Data Mining

Mathematical Methods for Knowledge Discovery and Data Mining

Author: Felici, Giovanni

Publisher: IGI Global

Published: 2007-10-31

Total Pages: 394

ISBN-13: 1599045303

DOWNLOAD EBOOK

"This book focuses on the mathematical models and methods that support most data mining applications and solution techniques, covering such topics as association rules; Bayesian methods; data visualization; kernel methods; neural networks; text, speech, and image recognition; an invaluable resource for scholars and practitioners in the fields of biomedicine, engineering, finance, manufacturing, marketing, performance measurement, and telecommunications"--Provided by publisher.


Data Mining and Knowledge Discovery with Evolutionary Algorithms

Data Mining and Knowledge Discovery with Evolutionary Algorithms

Author: Alex A. Freitas

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 272

ISBN-13: 3662049236

DOWNLOAD EBOOK

This book integrates two areas of computer science, namely data mining and evolutionary algorithms. Both these areas have become increasingly popular in the last few years, and their integration is currently an active research area. In general, data mining consists of extracting knowledge from data. The motivation for applying evolutionary algorithms to data mining is that evolutionary algorithms are robust search methods which perform a global search in the space of candidate solutions. This book emphasizes the importance of discovering comprehensible, interesting knowledge, which is potentially useful for intelligent decision making. The text explains both basic concepts and advanced topics


Data Mining and Knowledge Discovery Handbook

Data Mining and Knowledge Discovery Handbook

Author: Oded Maimon

Publisher: Springer Science & Business Media

Published: 2010-09-10

Total Pages: 1269

ISBN-13: 0387098232

DOWNLOAD EBOOK

This book organizes key concepts, theories, standards, methodologies, trends, challenges and applications of data mining and knowledge discovery in databases. It first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. It also gives in-depth descriptions of data mining applications in various interdisciplinary industries.


Data Mining and Knowledge Discovery Handbook

Data Mining and Knowledge Discovery Handbook

Author: Oded Z. Maimon

Publisher: Springer Science & Business Media

Published: 2005

Total Pages: 1436

ISBN-13: 9780387244358

DOWNLOAD EBOOK

Organizes major concepts, theories, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery in databases (KDD). This book provides algorithmic descriptions of classic methods, and also suitable for professionals in fields such as computing applications, information systems management, and more.


Data Mining

Data Mining

Author: Robert Stahlbock

Publisher: Springer Science & Business Media

Published: 2009-11-10

Total Pages: 387

ISBN-13: 1441912800

DOWNLOAD EBOOK

Over the course of the last twenty years, research in data mining has seen a substantial increase in interest, attracting original contributions from various disciplines including computer science, statistics, operations research, and information systems. Data mining supports a wide range of applications, from medical decision making, bioinformatics, web-usage mining, and text and image recognition to prominent business applications in corporate planning, direct marketing, and credit scoring. Research in information systems equally reflects this inter- and multidisciplinary approach, thereby advocating a series of papers at the intersection of data mining and information systems research. This special issue of Annals of Information Systems contains original papers and substantial extensions of selected papers from the 2007 and 2008 International Conference on Data Mining (DMIN’07 and DMIN’08, Las Vegas, NV) that have been rigorously peer-reviewed. The issue brings together topics on both information systems and data mining, and aims to give the reader a current snapshot of the contemporary research and state of the art practice in data mining.


Machine Learning and Data Mining in Pattern Recognition

Machine Learning and Data Mining in Pattern Recognition

Author: Petra Perner

Publisher: Springer Science & Business Media

Published: 2009-07-21

Total Pages: 837

ISBN-13: 364203070X

DOWNLOAD EBOOK

There is no royal road to science, and only those who do not dread the fatiguing climb of its steep paths have a chance of gaining its luminous summits. Karl Marx A Universial Genius of the 19th Century Many scientists from all over the world during the past two years since the MLDM 2007 have come along on the stony way to the sunny summit of science and have worked hard on new ideas and applications in the area of data mining in pattern r- ognition. Our thanks go to all those who took part in this year's MLDM. We appre- ate their submissions and the ideas shared with the Program Committee. We received over 205 submissions from all over the world to the International Conference on - chine Learning and Data Mining, MLDM 2009. The Program Committee carefully selected the best papers for this year’s program and gave detailed comments on each submitted paper. There were 63 papers selected for oral presentation and 17 papers for poster presentation. The topics range from theoretical topics for classification, clustering, association rule and pattern mining to specific data-mining methods for the different multimedia data types such as image mining, text mining, video mining and Web mining. Among these topics this year were special contributions to subtopics such as attribute discre- zation and data preparation, novelty and outlier detection, and distances and simila- ties.


Data Mining and Knowledge Discovery Handbook

Data Mining and Knowledge Discovery Handbook

Author: Oded Maimon

Publisher: Springer Science & Business Media

Published: 2006-05-28

Total Pages: 1378

ISBN-13: 038725465X

DOWNLOAD EBOOK

Data Mining and Knowledge Discovery Handbook organizes all major concepts, theories, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery in databases (KDD) into a coherent and unified repository. This book first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. This volume concludes with in-depth descriptions of data mining applications in various interdisciplinary industries including finance, marketing, medicine, biology, engineering, telecommunications, software, and security. Data Mining and Knowledge Discovery Handbook is designed for research scientists and graduate-level students in computer science and engineering. This book is also suitable for professionals in fields such as computing applications, information systems management, and strategic research management.