Data Envelopment Analysis

Data Envelopment Analysis

Author: Joe Zhu

Publisher: Springer

Published: 2015-03-18

Total Pages: 472

ISBN-13: 1489975535

DOWNLOAD EBOOK

This handbook represents a milestone in the progression of Data Envelopment Analysis (DEA). Written by experts who are often major contributors to DEA theory, it includes a collection of chapters that represent the current state-of-the-art in DEA research. Topics include distance functions and their value duals, cross-efficiency measures in DEA, integer DEA, weight restrictions and production trade-offs, facet analysis in DEA, scale elasticity, benchmarking and context-dependent DEA, fuzzy DEA, non-homogenous units, partial input-output relations, super efficiency, treatment of undesirable measures, translation invariance, stochastic nonparametric envelopment of data, and global frontier index. Focusing only on new models/approaches of DEA, the book includes contributions from Juan Aparicio, Mette Asmild, Yao Chen, Wade D. Cook, Juan Du, Rolf Färe, Julie Harrison, Raha Imanirad, Andrew Johnson, Chiang Kao, Abolfazl Keshvari, Timo Kuosmanen, Sungmook Lim, Wenbin Liu, Dimitri Margaritis, Reza Kazemi Matin, Ole B. Olesen, Jesus T. Pastor, Niels Chr. Petersen, Victor V. Podinovski, Paul Rouse, Antti Saastamoinen, Biresh K. Sahoo, Kaoru Tone, and Zhongbao Zhou.


Data Envelopment Analysis: Theory, Methodology, and Applications

Data Envelopment Analysis: Theory, Methodology, and Applications

Author: Abraham Charnes

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 507

ISBN-13: 9401106371

DOWNLOAD EBOOK

This book represents a milestone in the progression of Data Envelop ment Analysis (DEA). It is the first reference text which includes a comprehensive review and comparative discussion of the basic DEA models. The development is anchored in a unified mathematical and graphical treatment and includes the most important modeling ex tensions. In addition, this is the first book that addresses the actual process of conducting DEA analyses including combining DEA and 1 parametric techniques. The book has three other distinctive features. It traces the applications driven evolution and diffusion of DEA models and extensions across disciplinary boundaries. It includes a comprehensive bibliography to serve as a source of references as well as a platform for further develop ments. And, finally, the power of DEA analysis is demonstrated through fifteen novel applications which should serve as an inspiration for future applications and extensions of the methodology. The origin of this book was a Conference on New Uses of DEA in 2 Management and Public Policy which was held at the IC Institute of the University of Texas at Austin on September 27-29, 1989. The conference was made possible through NSF Grant #SES-8722504 (A. Charnes and 2 W. W. Cooper, co-PIs) and the support of the IC Institute.


Introduction to the Theory and Application of Data Envelopment Analysis

Introduction to the Theory and Application of Data Envelopment Analysis

Author: Emmanuel Thanassoulis

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 296

ISBN-13: 146151407X

DOWNLOAD EBOOK

1 DATA ENVELOPMENT ANALYSIS Data Envelopment Analysis (DEA) was initially developed as a method for assessing the comparative efficiencies of organisational units such as the branches of a bank, schools, hospital departments or restaurants. The key in each case is that they perform feature which makes the units comparable the same function in terms of the kinds of resource they use and the types of output they produce. For example all bank branches to be compared would typically use staff and capital assets to effect income generating activities such as advancing loans, selling financial products and carrying out banking transactions on behalf of their clients. The efficiencies assessed in this context by DEA are intended to reflect the scope for resource conservation at the unit being assessed without detriment to its outputs, or alternatively, the scope for output augmentation without additional resources. The efficiencies assessed are comparative or relative because they reflect scope for resource conservation or output augmentation at one unit relative to other comparable benchmark units rather than in some absolute sense. We resort to relative rather than absolute efficiencies because in most practical contexts we lack sufficient information to derive the superior measures of absolute efficiency. DEA was initiated by Charnes Cooper and Rhodes in 1978 in their seminal paper Chames et al. (1978). The paper operationalised and extended by means of linear programming production economics concepts of empirical efficiency put forth some twenty years earlier by Farrell (1957).


Handbook on Data Envelopment Analysis

Handbook on Data Envelopment Analysis

Author: William W. Cooper

Publisher: Springer Science & Business Media

Published: 2011-08-23

Total Pages: 513

ISBN-13: 1441961518

DOWNLOAD EBOOK

This handbook covers DEA topics that are extensively used and solidly based. The purpose of the handbook is to (1) describe and elucidate the state of the field and (2), where appropriate, extend the frontier of DEA research. It defines the state-of-the-art of DEA methodology and its uses. This handbook is intended to represent a milestone in the progression of DEA. Written by experts, who are generally major contributors to the topics to be covered, it includes a comprehensive review and discussion of basic DEA models, which, in the present issue extensions to the basic DEA methods, and a collection of DEA applications in the areas of banking, engineering, health care, and services. The handbook's chapters are organized into two categories: (i) basic DEA models, concepts, and their extensions, and (ii) DEA applications. First edition contributors have returned to update their work. The second edition includes updated versions of selected first edition chapters. New chapters have been added on: different approaches with no need for a priori choices of weights (called “multipliers) that reflect meaningful trade-offs, construction of static and dynamic DEA technologies, slacks-based model and its extensions, DEA models for DMUs that have internal structures network DEA that can be used for measuring supply chain operations, Selection of DEA applications in the service sector with a focus on building a conceptual framework, research design and interpreting results.


Performance Measurement with Fuzzy Data Envelopment Analysis

Performance Measurement with Fuzzy Data Envelopment Analysis

Author: Ali Emrouznejad

Publisher: Springer

Published: 2013-11-29

Total Pages: 293

ISBN-13: 3642413722

DOWNLOAD EBOOK

The intensity of global competition and ever-increasing economic uncertainties has led organizations to search for more efficient and effective ways to manage their business operations. Data envelopment analysis (DEA) has been widely used as a conceptually simple yet powerful tool for evaluating organizational productivity and performance. Fuzzy DEA (FDEA) is a promising extension of the conventional DEA proposed for dealing with imprecise and ambiguous data in performance measurement problems. This book is the first volume in the literature to present the state-of-the-art developments and applications of FDEA. It is designed for students, educators, researchers, consultants and practicing managers in business, industry, and government with a basic understanding of the DEA and fuzzy logic concepts.


Data Envelopment Analysis with R

Data Envelopment Analysis with R

Author: Farhad Hosseinzadeh Lotfi

Publisher: Springer

Published: 2019-07-23

Total Pages: 248

ISBN-13: 3030242773

DOWNLOAD EBOOK

This book introduces readers to the use of R codes for optimization problems. First, it provides the necessary background to understand data envelopment analysis (DEA), with a special emphasis on fuzzy DEA. It then describes DEA models, including fuzzy DEA models, and shows how to use them to solve optimization problems with R. Further, it discusses the main advantages of R in optimization problems, and provides R codes based on real-world data sets throughout. Offering a comprehensive review of DEA and fuzzy DEA models and the corresponding R codes, this practice-oriented reference guide is intended for masters and Ph.D. students in various disciplines, as well as practitioners and researchers.


Introduction to Data Envelopment Analysis and Its Uses

Introduction to Data Envelopment Analysis and Its Uses

Author: William W. Cooper

Publisher: Springer Science & Business Media

Published: 2006-03-20

Total Pages: 354

ISBN-13: 0387291229

DOWNLOAD EBOOK

Introduction to Data Envelopment Analysis and Its Uses: With DEA-Solver Software and References has been carefully designed by the authors to provide a systematic introduction to DEA and its uses as a multifaceted tool for evaluating problems in a variety of contexts. The authors have been involved in DEA's development from the beginning. William Cooper (with Abraham Charnes and Edwardo Rhodes) is a founder of DEA. Lawrence Seiford and Kaoru Tone have been actively involved as researchers and practitioners from its earliest beginnings. All have been deeply involved in uses of DEA in practical applications as well as in the development of its basic theory and methodologies. The result is a textbook grounded in authority, experience and substance.


Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis

Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis

Author: Joe Zhu

Publisher: Springer Science & Business Media

Published: 2007-06-08

Total Pages: 334

ISBN-13: 0387716076

DOWNLOAD EBOOK

In a relatively short period of time, data envelopment analysis (DEA) has grown into a powerful analytical tool for measuring and evaluating performance. DEA is computational at its core and this book is one of several Springer aim to publish on the subject. This work deals with the micro aspects of handling and modeling data issues in DEA problems. It is a handbook treatment dealing with specific data problems, including imprecise data and undesirable outputs.


Network Data Envelopment Analysis

Network Data Envelopment Analysis

Author: Chiang Kao

Publisher: Springer

Published: 2016-08-23

Total Pages: 447

ISBN-13: 3319317180

DOWNLOAD EBOOK

This book presents the underlying theory, model development, and applications of network Data Envelopment Analysis (DEA) in a systematic way. The field of network DEA extends and complements conventional DEA by considering not only inputs and outputs when measuring system efficiency, but also the internal structure of the system being analyzed. By analyzing the efficiency of individual internal components, and more particularly by studying the effects of relationships among components which are modeled and implemented by means of various network structures, the “network DEA” approach is able to help identify and manage the specific components that contribute inefficiencies into the overall systems. This relatively new approach comprises an important analytical tool based on mathematical programming techniques, with valuable implications to production and operations management. The existing models for measuring the efficiency of systems of specific network structures are also discussed, and the relationships between the system and component efficiencies are explored. This book should be able to inspire new research and new applications based on the current state of the art. Performance evaluation is an important task in management, and is needed to (i) better understand the past accomplishments of an organization and (ii) plan for its future development. However, this task becomes rather challenging when multiple performance metrics are involved. DEA is a powerful tool to cope with such issues. For systems or operations composed of interrelated processes, managers need to know how the performances of the various processes evaluated and how they are aggregated to form the overall performance of the system. This book provides an advanced exposition on performance evaluation of systems with network structures. It explores the network nature of most production and operation systems, and explains why network analyses are necessary.


Data Envelopment Analysis

Data Envelopment Analysis

Author: Wade D. Cook

Publisher: Springer

Published: 2014-07-08

Total Pages: 601

ISBN-13: 1489980687

DOWNLOAD EBOOK

This handbook serves as a complement to the Handbook on Data Envelopment Analysis (eds, W.W. Cooper, L.M. Seiford and J, Zhu, 2011, Springer) in an effort to extend the frontier of DEA research. It provides a comprehensive source for the state-of-the art DEA modeling on internal structures and network DEA. Chapter 1 provides a survey on two-stage network performance decomposition and modeling techniques. Chapter 2 discusses the pitfalls in network DEA modeling. Chapter 3 discusses efficiency decompositions in network DEA under three types of structures, namely series, parallel and dynamic. Chapter 4 studies the determination of the network DEA frontier. In chapter 5 additive efficiency decomposition in network DEA is discussed. An approach in scale efficiency measurement in two-stage networks is presented in chapter 6. Chapter 7 further discusses the scale efficiency decomposition in two stage networks. Chapter 8 offers a bargaining game approach to modeling two-stage networks. Chapter 9 studies shared resources and efficiency decomposition in two-stage networks. Chapter 10 introduces an approach to computing the technical efficiency scores for a dynamic production network and its sub-processes. Chapter 11 presents a slacks-based network DEA. Chapter 12 discusses a DEA modeling technique for a two-stage network process where the inputs of the second stage include both the outputs from the first stage and additional inputs to the second stage. Chapter 13 presents an efficiency measurement methodology for multi-stage production systems. Chapter 14 discusses network DEA models, both static and dynamic. The discussion also explores various useful objective functions that can be applied to the models to find the optimal allocation of resources for processes within the black box, that are normally invisible to DEA. Chapter 15 provides a comprehensive review of various type network DEA modeling techniques. Chapter 16 presents shared resources models for deriving aggregate measures of bank-branch performance, with accompanying component measures that make up that aggregate value. Chapter 17 examines a set of manufacturing plants operating under a single umbrella, with the objective being to use the component or function measures to decide what might be considered as each plant’s core business. Chapter 18 considers problem settings where there may be clusters or groups of DMUs that form a hierarchy. The specific case of a set off electric power plants is examined in this context. Chapter 19 models bad outputs in two-stage network DEA. Chapter 20 presents an application of network DEA to performance measurement of Major League Baseball (MLB) teams. Chapter 21 presents an application of a two-stage network DEA model for examining the performance of 30 U.S. airline companies. Chapter 22 then presents two distinct network efficiency models that are applied to engineering systems.