Targeted Learning in Data Science

Targeted Learning in Data Science

Author: Mark J. van der Laan

Publisher: Springer

Published: 2018-03-28

Total Pages: 655

ISBN-13: 3319653040

DOWNLOAD EBOOK

This textbook for graduate students in statistics, data science, and public health deals with the practical challenges that come with big, complex, and dynamic data. It presents a scientific roadmap to translate real-world data science applications into formal statistical estimation problems by using the general template of targeted maximum likelihood estimators. These targeted machine learning algorithms estimate quantities of interest while still providing valid inference. Targeted learning methods within data science area critical component for solving scientific problems in the modern age. The techniques can answer complex questions including optimal rules for assigning treatment based on longitudinal data with time-dependent confounding, as well as other estimands in dependent data structures, such as networks. Included in Targeted Learning in Data Science are demonstrations with soft ware packages and real data sets that present a case that targeted learning is crucial for the next generation of statisticians and data scientists. Th is book is a sequel to the first textbook on machine learning for causal inference, Targeted Learning, published in 2011. Mark van der Laan, PhD, is Jiann-Ping Hsu/Karl E. Peace Professor of Biostatistics and Statistics at UC Berkeley. His research interests include statistical methods in genomics, survival analysis, censored data, machine learning, semiparametric models, causal inference, and targeted learning. Dr. van der Laan received the 2004 Mortimer Spiegelman Award, the 2005 Van Dantzig Award, the 2005 COPSS Snedecor Award, the 2005 COPSS Presidential Award, and has graduated over 40 PhD students in biostatistics and statistics. Sherri Rose, PhD, is Associate Professor of Health Care Policy (Biostatistics) at Harvard Medical School. Her work is centered on developing and integrating innovative statistical approaches to advance human health. Dr. Rose’s methodological research focuses on nonparametric machine learning for causal inference and prediction. She co-leads the Health Policy Data Science Lab and currently serves as an associate editor for the Journal of the American Statistical Association and Biostatistics.


Dynamic Models for Knowledge-Driven Organizations

Dynamic Models for Knowledge-Driven Organizations

Author: Jennex, Murray E.

Publisher: IGI Global

Published: 2012-11-30

Total Pages: 443

ISBN-13: 1466624868

DOWNLOAD EBOOK

Since knowledge systems and knowledge management programs are put in place to monitor workers in the performance of their jobs; knowledge is, therefore, an essential component in the achievement of goals and production of economic benefit of an organization. Dynamic Models for Knowledge-Driven Organizations presents a widespread collection of research on the understanding of the managerial, technical and human issues associated with the use of knowledge in organizations while bearing in mind the design, development, and maintenance of useful knowledge management systems. This reference is essential for the tools and information needed to effectively implement knowledge management systems and would benefit researchers and practitioners alike.


Dynamic Linear Models with R

Dynamic Linear Models with R

Author: Giovanni Petris

Publisher: Springer Science & Business Media

Published: 2009-06-12

Total Pages: 258

ISBN-13: 0387772383

DOWNLOAD EBOOK

State space models have gained tremendous popularity in recent years in as disparate fields as engineering, economics, genetics and ecology. After a detailed introduction to general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. Whenever possible it is shown how to compute estimates and forecasts in closed form; for more complex models, simulation techniques are used. A final chapter covers modern sequential Monte Carlo algorithms. The book illustrates all the fundamental steps needed to use dynamic linear models in practice, using R. Many detailed examples based on real data sets are provided to show how to set up a specific model, estimate its parameters, and use it for forecasting. All the code used in the book is available online. No prior knowledge of Bayesian statistics or time series analysis is required, although familiarity with basic statistics and R is assumed.


Computational Science and Its Applications - ICCSA 2008

Computational Science and Its Applications - ICCSA 2008

Author: Osvaldo Gervasi

Publisher: Springer Science & Business Media

Published: 2008-06-24

Total Pages: 1283

ISBN-13: 3540698388

DOWNLOAD EBOOK

The two-volume set LNCS 5072 and 5073 constitutes the refereed proceedings of the International Conference on Computational Science and Its Applications, ICCSA 2008, held in Perugia, Italy, in June/July, 2008. The two volumes contain papers presenting a wealth of original research results in the field of computational science, from foundational issues in computer science and mathematics to advanced applications in virtually all sciences making use of computational techniques. The topics of the fully refereed papers are structured according to the five major conference themes: computational methods, algorithms and scientific applications, high performance technical computing and networks, advanced and emerging applications, geometric modelling, graphics and visualization, as well as information systems and information technologies. Moreover, submissions from more than 20 workshops and technical sessions in the areas, such as embedded systems, geographical analysis, computational geometry, computational geomatics, computer graphics, virtual reality, computer modeling, computer algebra, mobile communications, wireless networks, computational forensics, data storage, information security, web learning, software engineering, computational intelligence, digital security, biometrics, molecular structures, material design, ubiquitous computing, symbolic computations, web systems and intelligence, and e-education contribute to this publication.


Safety and Reliability: Methodology and Applications

Safety and Reliability: Methodology and Applications

Author: Tomasz Nowakowski

Publisher: CRC Press

Published: 2014-09-01

Total Pages: 408

ISBN-13: 1315736977

DOWNLOAD EBOOK

Within the last fifty years the performance requirements for technical objects and systems were supplemented with: customer expectations (quality), abilities to prevent the loss of the object properties in operation time (reliability and maintainability), protection against the effects of undesirable events (safety and security) and the ability to


Introduction to Small Area Estimation Techniques

Introduction to Small Area Estimation Techniques

Author: Asian Development Bank

Publisher: Asian Development Bank

Published: 2020-05-01

Total Pages: 152

ISBN-13: 9292622234

DOWNLOAD EBOOK

This guide to small area estimation aims to help users compile more reliable granular or disaggregated data in cost-effective ways. It explains small area estimation techniques with examples of how the easily accessible R analytical platform can be used to implement them, particularly to estimate indicators on poverty, employment, and health outcomes. The guide is intended for staff of national statistics offices and for other development practitioners. It aims to help them to develop and implement targeted socioeconomic policies to ensure that the vulnerable segments of societies are not left behind, and to monitor progress toward the Sustainable Development Goals.


Targeted Learning

Targeted Learning

Author: Mark J. van der Laan

Publisher: Springer Science & Business Media

Published: 2011-06-17

Total Pages: 628

ISBN-13: 1441997822

DOWNLOAD EBOOK

The statistics profession is at a unique point in history. The need for valid statistical tools is greater than ever; data sets are massive, often measuring hundreds of thousands of measurements for a single subject. The field is ready to move towards clear objective benchmarks under which tools can be evaluated. Targeted learning allows (1) the full generalization and utilization of cross-validation as an estimator selection tool so that the subjective choices made by humans are now made by the machine, and (2) targeting the fitting of the probability distribution of the data toward the target parameter representing the scientific question of interest. This book is aimed at both statisticians and applied researchers interested in causal inference and general effect estimation for observational and experimental data. Part I is an accessible introduction to super learning and the targeted maximum likelihood estimator, including related concepts necessary to understand and apply these methods. Parts II-IX handle complex data structures and topics applied researchers will immediately recognize from their own research, including time-to-event outcomes, direct and indirect effects, positivity violations, case-control studies, censored data, longitudinal data, and genomic studies.


Patterns, Predictions, and Actions: Foundations of Machine Learning

Patterns, Predictions, and Actions: Foundations of Machine Learning

Author: Moritz Hardt

Publisher: Princeton University Press

Published: 2022-08-23

Total Pages: 321

ISBN-13: 0691233721

DOWNLOAD EBOOK

An authoritative, up-to-date graduate textbook on machine learning that highlights its historical context and societal impacts Patterns, Predictions, and Actions introduces graduate students to the essentials of machine learning while offering invaluable perspective on its history and social implications. Beginning with the foundations of decision making, Moritz Hardt and Benjamin Recht explain how representation, optimization, and generalization are the constituents of supervised learning. They go on to provide self-contained discussions of causality, the practice of causal inference, sequential decision making, and reinforcement learning, equipping readers with the concepts and tools they need to assess the consequences that may arise from acting on statistical decisions. Provides a modern introduction to machine learning, showing how data patterns support predictions and consequential actions Pays special attention to societal impacts and fairness in decision making Traces the development of machine learning from its origins to today Features a novel chapter on machine learning benchmarks and datasets Invites readers from all backgrounds, requiring some experience with probability, calculus, and linear algebra An essential textbook for students and a guide for researchers