Data-Driven Computational Methods

Data-Driven Computational Methods

Author: John Harlim

Publisher: Cambridge University Press

Published: 2018-07-12

Total Pages: 171

ISBN-13: 1108472478

DOWNLOAD EBOOK

Describes computational methods for parametric and nonparametric modeling of stochastic dynamics. Aimed at graduate students, and suitable for self-study.


Data-Driven Science and Engineering

Data-Driven Science and Engineering

Author: Steven L. Brunton

Publisher: Cambridge University Press

Published: 2022-05-05

Total Pages: 615

ISBN-13: 1009098489

DOWNLOAD EBOOK

A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.


Data-Driven Modeling & Scientific Computation

Data-Driven Modeling & Scientific Computation

Author: Jose Nathan Kutz

Publisher:

Published: 2013-08-08

Total Pages: 657

ISBN-13: 0199660336

DOWNLOAD EBOOK

Combining scientific computing methods and algorithms with modern data analysis techniques, including basic applications of compressive sensing and machine learning, this book develops techniques that allow for the integration of the dynamics of complex systems and big data. MATLAB is used throughout for mathematical solution strategies.


Data-Driven Computational Neuroscience

Data-Driven Computational Neuroscience

Author: Concha Bielza

Publisher: Cambridge University Press

Published: 2020-11-26

Total Pages: 709

ISBN-13: 110849370X

DOWNLOAD EBOOK

Trains researchers and graduate students in state-of-the-art statistical and machine learning methods to build models with real-world data.


Computational and Data-Driven Chemistry Using Artificial Intelligence

Computational and Data-Driven Chemistry Using Artificial Intelligence

Author: Takashiro Akitsu

Publisher: Elsevier

Published: 2021-10-08

Total Pages: 280

ISBN-13: 0128232722

DOWNLOAD EBOOK

Computational and Data-Driven Chemistry Using Artificial Intelligence: Volume 1: Fundamentals, Methods and Applications highlights fundamental knowledge and current developments in the field, giving readers insight into how these tools can be harnessed to enhance their own work. Offering the ability to process large or complex data-sets, compare molecular characteristics and behaviors, and help researchers design or identify new structures, Artificial Intelligence (AI) holds huge potential to revolutionize the future of chemistry. Volume 1 explores the fundamental knowledge and current methods being used to apply AI across a whole host of chemistry applications. Drawing on the knowledge of its expert team of global contributors, the book offers fascinating insight into this rapidly developing field and serves as a great resource for all those interested in exploring the opportunities afforded by the intersection of chemistry and AI in their own work. Part 1 provides foundational information on AI in chemistry, with an introduction to the field and guidance on database usage and statistical analysis to help support newcomers to the field. Part 2 then goes on to discuss approaches currently used to address problems in broad areas such as computational and theoretical chemistry; materials, synthetic and medicinal chemistry; crystallography, analytical chemistry, and spectroscopy. Finally, potential future trends in the field are discussed. - Provides an accessible introduction to the current state and future possibilities for AI in chemistry - Explores how computational chemistry methods and approaches can both enhance and be enhanced by AI - Highlights the interdisciplinary and broad applicability of AI tools across a wide range of chemistry fields


Tensor Voting

Tensor Voting

Author: Philippos Mordohai

Publisher: Springer Nature

Published: 2022-06-01

Total Pages: 126

ISBN-13: 3031022424

DOWNLOAD EBOOK

This lecture presents research on a general framework for perceptual organization that was conducted mainly at the Institute for Robotics and Intelligent Systems of the University of Southern California. It is not written as a historical recount of the work, since the sequence of the presentation is not in chronological order. It aims at presenting an approach to a wide range of problems in computer vision and machine learning that is data-driven, local and requires a minimal number of assumptions. The tensor voting framework combines these properties and provides a unified perceptual organization methodology applicable in situations that may seem heterogeneous initially. We show how several problems can be posed as the organization of the inputs into salient perceptual structures, which are inferred via tensor voting. The work presented here extends the original tensor voting framework with the addition of boundary inference capabilities; a novel re-formulation of the framework applicable to high-dimensional spaces and the development of algorithms for computer vision and machine learning problems. We show complete analysis for some problems, while we briefly outline our approach for other applications and provide pointers to relevant sources.


Computational Legal Studies

Computational Legal Studies

Author: Ryan Whalen

Publisher: Edward Elgar Publishing

Published: 2020-09-25

Total Pages: 384

ISBN-13: 1788977459

DOWNLOAD EBOOK

Featuring contributions from a diverse set of experts, this thought-provoking book offers a visionary introduction to the computational turn in law and the resulting emergence of the computational legal studies field. It explores how computational data creation, collection, and analysis techniques are transforming the way in which we comprehend and study the law, and the implications that this has for the future of legal studies.


Data-Driven Personas

Data-Driven Personas

Author: Bernard J. Jansen

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 317

ISBN-13: 3031022319

DOWNLOAD EBOOK

Data-driven personas are a significant advancement in the fields of human-centered informatics and human-computer interaction. Data-driven personas enhance user understanding by combining the empathy inherent with personas with the rationality inherent in analytics using computational methods. Via the employment of these computational methods, the data-driven persona method permits the use of large-scale user data, which is a novel advancement in persona creation. A common approach for increasing stakeholder engagement about audiences, customers, or users, persona creation remained relatively unchanged for several decades. However, the availability of digital user data, data science algorithms, and easy access to analytics platforms provide avenues and opportunities to enhance personas from often sketchy representations of user segments to precise, actionable, interactive decision-making tools—data-driven personas! Using the data-driven approach, the persona profile can serve as an interface to a fully functional analytics system that can present user representation at various levels of information granularity for more task-aligned user insights. We trace the techniques that have enabled the development of data-driven personas and then conceptually frame how one can leverage data-driven personas as tools for both empathizing with and understanding of users. Presenting a conceptual framework consisting of (a) persona benefits, (b) analytics benefits, and (c) decision-making outcomes, we illustrate applying this framework via practical use cases in areas of system design, digital marketing, and content creation to demonstrate the application of data-driven personas in practical applied situations. We then present an overview of a fully functional data-driven persona system as an example of multi-level information aggregation needed for decision making about users. We demonstrate that data-driven personas systems can provide critical, empathetic, and user understanding functionalities for anyone needing such insights.


Dynamic Mode Decomposition

Dynamic Mode Decomposition

Author: J. Nathan Kutz

Publisher: SIAM

Published: 2016-11-23

Total Pages: 241

ISBN-13: 1611974496

DOWNLOAD EBOOK

Data-driven dynamical systems is a burgeoning field?it connects how measurements of nonlinear dynamical systems and/or complex systems can be used with well-established methods in dynamical systems theory. This is a critically important new direction because the governing equations of many problems under consideration by practitioners in various scientific fields are not typically known. Thus, using data alone to help derive, in an optimal sense, the best dynamical system representation of a given application allows for important new insights. The recently developed dynamic mode decomposition (DMD) is an innovative tool for integrating data with dynamical systems theory. The DMD has deep connections with traditional dynamical systems theory and many recent innovations in compressed sensing and machine learning. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, the first book to address the DMD algorithm, presents a pedagogical and comprehensive approach to all aspects of DMD currently developed or under development; blends theoretical development, example codes, and applications to showcase the theory and its many innovations and uses; highlights the numerous innovations around the DMD algorithm and demonstrates its efficacy using example problems from engineering and the physical and biological sciences; and provides extensive MATLAB code, data for intuitive examples of key methods, and graphical presentations.


System- and Data-Driven Methods and Algorithms

System- and Data-Driven Methods and Algorithms

Author: Peter Benner

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2021-11-08

Total Pages: 346

ISBN-13: 3110497719

DOWNLOAD EBOOK

An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This two-volume handbook covers methods as well as applications. This first volume focuses on real-time control theory, data assimilation, real-time visualization, high-dimensional state spaces and interaction of different reduction techniques.