Statistical Foundations of Data Science

Statistical Foundations of Data Science

Author: Jianqing Fan

Publisher: CRC Press

Published: 2020-09-21

Total Pages: 942

ISBN-13: 0429527616

DOWNLOAD EBOOK

Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.


Statistical Foundations, Reasoning and Inference

Statistical Foundations, Reasoning and Inference

Author: Göran Kauermann

Publisher: Springer Nature

Published: 2021-09-30

Total Pages: 361

ISBN-13: 3030698270

DOWNLOAD EBOOK

This textbook provides a comprehensive introduction to statistical principles, concepts and methods that are essential in modern statistics and data science. The topics covered include likelihood-based inference, Bayesian statistics, regression, statistical tests and the quantification of uncertainty. Moreover, the book addresses statistical ideas that are useful in modern data analytics, including bootstrapping, modeling of multivariate distributions, missing data analysis, causality as well as principles of experimental design. The textbook includes sufficient material for a two-semester course and is intended for master’s students in data science, statistics and computer science with a rudimentary grasp of probability theory. It will also be useful for data science practitioners who want to strengthen their statistics skills.


Foundations of Statistics for Data Scientists

Foundations of Statistics for Data Scientists

Author: Alan Agresti

Publisher: CRC Press

Published: 2021-11-22

Total Pages: 486

ISBN-13: 1000462919

DOWNLOAD EBOOK

Foundations of Statistics for Data Scientists: With R and Python is designed as a textbook for a one- or two-term introduction to mathematical statistics for students training to become data scientists. It is an in-depth presentation of the topics in statistical science with which any data scientist should be familiar, including probability distributions, descriptive and inferential statistical methods, and linear modeling. The book assumes knowledge of basic calculus, so the presentation can focus on "why it works" as well as "how to do it." Compared to traditional "mathematical statistics" textbooks, however, the book has less emphasis on probability theory and more emphasis on using software to implement statistical methods and to conduct simulations to illustrate key concepts. All statistical analyses in the book use R software, with an appendix showing the same analyses with Python. The book also introduces modern topics that do not normally appear in mathematical statistics texts but are highly relevant for data scientists, such as Bayesian inference, generalized linear models for non-normal responses (e.g., logistic regression and Poisson loglinear models), and regularized model fitting. The nearly 500 exercises are grouped into "Data Analysis and Applications" and "Methods and Concepts." Appendices introduce R and Python and contain solutions for odd-numbered exercises. The book's website has expanded R, Python, and Matlab appendices and all data sets from the examples and exercises.


Mathematical Foundations for Data Analysis

Mathematical Foundations for Data Analysis

Author: Jeff M. Phillips

Publisher: Springer Nature

Published: 2021-03-29

Total Pages: 299

ISBN-13: 3030623416

DOWNLOAD EBOOK

This textbook, suitable for an early undergraduate up to a graduate course, provides an overview of many basic principles and techniques needed for modern data analysis. In particular, this book was designed and written as preparation for students planning to take rigorous Machine Learning and Data Mining courses. It introduces key conceptual tools necessary for data analysis, including concentration of measure and PAC bounds, cross validation, gradient descent, and principal component analysis. It also surveys basic techniques in supervised (regression and classification) and unsupervised learning (dimensionality reduction and clustering) through an accessible, simplified presentation. Students are recommended to have some background in calculus, probability, and linear algebra. Some familiarity with programming and algorithms is useful to understand advanced topics on computational techniques.


Foundations of Applied Statistical Methods

Foundations of Applied Statistical Methods

Author: Hang Lee

Publisher: Springer Science & Business Media

Published: 2013-11-08

Total Pages: 169

ISBN-13: 3319024027

DOWNLOAD EBOOK

This is a text in methods of applied statistics for researchers who design and conduct experiments, perform statistical inference, and write technical reports. These research activities rely on an adequate knowledge of applied statistics. The reader both builds on basic statistics skills and learns to apply it to applicable scenarios without over-emphasis on the technical aspects. Demonstrations are a very important part of this text. Mathematical expressions are exhibited only if they are defined or intuitively comprehensible. This text may be used as a self review guidebook for applied researchers or as an introductory statistical methods textbook for students not majoring in statistics.​ Discussion includes essential probability models, inference of means, proportions, correlations and regressions, methods for censored survival time data analysis, and sample size determination. The author has over twenty years of experience on applying statistical methods to study design and data analysis in collaborative medical research setting as well as on teaching. He received his PhD from University of Southern California Department of Preventive Medicine, received a post-doctoral training at Harvard Department of Biostatistics, has held faculty appointments at UCLA School of Medicine and Harvard Medical School, and currently a biostatistics faculty member at Massachusetts General Hospital and Harvard Medical School in Boston, Massachusetts, USA.


The Foundations of Statistics: A Simulation-based Approach

The Foundations of Statistics: A Simulation-based Approach

Author: Shravan Vasishth

Publisher: Springer Science & Business Media

Published: 2010-11-11

Total Pages: 187

ISBN-13: 3642163130

DOWNLOAD EBOOK

Statistics and hypothesis testing are routinely used in areas (such as linguistics) that are traditionally not mathematically intensive. In such fields, when faced with experimental data, many students and researchers tend to rely on commercial packages to carry out statistical data analysis, often without understanding the logic of the statistical tests they rely on. As a consequence, results are often misinterpreted, and users have difficulty in flexibly applying techniques relevant to their own research — they use whatever they happen to have learned. A simple solution is to teach the fundamental ideas of statistical hypothesis testing without using too much mathematics. This book provides a non-mathematical, simulation-based introduction to basic statistical concepts and encourages readers to try out the simulations themselves using the source code and data provided (the freely available programming language R is used throughout). Since the code presented in the text almost always requires the use of previously introduced programming constructs, diligent students also acquire basic programming abilities in R. The book is intended for advanced undergraduate and graduate students in any discipline, although the focus is on linguistics, psychology, and cognitive science. It is designed for self-instruction, but it can also be used as a textbook for a first course on statistics. Earlier versions of the book have been used in undergraduate and graduate courses in Europe and the US. ”Vasishth and Broe have written an attractive introduction to the foundations of statistics. It is concise, surprisingly comprehensive, self-contained and yet quite accessible. Highly recommended.” Harald Baayen, Professor of Linguistics, University of Alberta, Canada ”By using the text students not only learn to do the specific things outlined in the book, they also gain a skill set that empowers them to explore new areas that lie beyond the book’s coverage.” Colin Phillips, Professor of Linguistics, University of Maryland, USA


Foundations of Data Science

Foundations of Data Science

Author: Avrim Blum

Publisher: Cambridge University Press

Published: 2020-01-23

Total Pages: 433

ISBN-13: 1108617360

DOWNLOAD EBOOK

This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.


Foundations of Statistical Analyses and Applications with SAS

Foundations of Statistical Analyses and Applications with SAS

Author: Michael Falk

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 405

ISBN-13: 3034881959

DOWNLOAD EBOOK

This book links up the theory of a selection of statistical procedures used in general practice with their application to real world data sets using the statistical software package SAS (Statistical Analysis System). These applications are intended to illustrate the theory and to provide, simultaneously, the ability to use the knowledge effectively and readily in execution.


Practical Statistics for Data Scientists

Practical Statistics for Data Scientists

Author: Peter Bruce

Publisher: "O'Reilly Media, Inc."

Published: 2017-05-10

Total Pages: 322

ISBN-13: 1491952911

DOWNLOAD EBOOK

Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data