Multifaceted in its approach, this text provides a conceptual framework for thinking about, implementing and using data structures. It offers an introduction to C++, with emphasis on data structures, and teaches a modern data abstraction style of programming.
For one- or two-semester courses in data structures (CS-2) in the departments of Computer Science, Computer Engineering, Business, and Management Information Systems. This is the most student-friendly data structures text available that introduces ADTs in individual, brief chapters - each with pedagogical tools to help students master each concept. Using the latest features of Java 5, this unique object-oriented presentation makes a clear distinction between specification and implementation to simplify learning, while providing maximum classroom flexibility.
*JS123-6, 0-201-71359-4, Riley, David; The Object of Data Abstraction and Structures (Using Java) This book covers traditional data structures using an early object-oriented approach, and by paying special attention to developing sound software engineering skills. Provides extensive coverage of foundational material needed to study data structures (objects and classes, software specification, inheritance, exceptions, and recursion). Provides an object-oriented approach to abstract design using UML class diagrams and several design patterns. Emphasizes software-engineering skills as used in professional practice.MARKET Readers who want to use the most powerful features of Java to program data structures.
This edition of Data Abstraction and Problem Solving with Java: Walls and Mirrors employs the analogies of Walls (data abstraction) and Mirrors (recursion) to teach Java programming design solutions, in a way that beginning students find accessible. The book has a student-friendly pedagogical approach that carefully accounts for the strengths and weaknesses of the Java language. With this book, students will gain a solid foundation in data abstraction, object-oriented programming, and other problem-solving techniques. The full text downloaded to your computer With eBooks you can: search for key concepts, words and phrases make highlights and notes as you study share your notes with friends eBooks are downloaded to your computer and accessible either offline through the Bookshelf (available as a free download), available online and also via the iPad and Android apps. Upon purchase, you'll gain instant access to this eBook. Time limit The eBooks products do not have an expiry date. You will continue to access your digital ebook products whilst you have your Bookshelf installed.
Computers that `program themselves' has long been an aim of computer scientists. Recently genetic programming (GP) has started to show its promise by automatically evolving programs. Indeed in a small number of problems GP has evolved programs whose performance is similar to or even slightly better than that of programs written by people. The main thrust of GP has been to automatically create functions. While these can be of great use they contain no memory and relatively little work has addressed automatic creation of program code including stored data. This issue is the main focus of Genetic Programming, and Data Structures: Genetic Programming + Data Structures = Automatic Programming!. This book is motivated by the observation from software engineering that data abstraction (e.g., via abstract data types) is essential in programs created by human programmers. This book shows that abstract data types can be similarly beneficial to the automatic production of programs using GP. Genetic Programming and Data Structures: Genetic Programming + Data Structures = Automatic Programming! shows how abstract data types (stacks, queues and lists) can be evolved using genetic programming, demonstrates how GP can evolve general programs which solve the nested brackets problem, recognises a Dyck context free language, and implements a simple four function calculator. In these cases, an appropriate data structure is beneficial compared to simple indexed memory. This book also includes a survey of GP, with a critical review of experiments with evolving memory, and reports investigations of real world electrical network maintenance scheduling problems that demonstrate that Genetic Algorithms can find low cost viable solutions to such problems. Genetic Programming and Data Structures: Genetic Programming + Data Structures = Automatic Programming! should be of direct interest to computer scientists doing research on genetic programming, genetic algorithms, data structures, and artificial intelligence. In addition, this book will be of interest to practitioners working in all of these areas and to those interested in automatic programming.
Praise for the first edition: "The well-written, comprehensive book...[is] aiming to become a de facto reference for the language and its features and capabilities. The pace is appropriate for beginners; programming concepts are introduced progressively through a range of examples and then used as tools for building applications in various domains, including sophisticated data structures and algorithms...Highly recommended. Students of all levels, faculty, and professionals/practitioners. —D. Papamichail, University of Miami in CHOICE Magazine Mark Lewis’ Introduction to the Art of Programming Using Scala was the first textbook to use Scala for introductory CS courses. Fully revised and expanded, the new edition of this popular text has been divided into two books. Object-Orientation, Abstraction, and Data Structures Using Scala, Second Edition is intended to be used as a textbook for a second or third semester course in Computer Science. The Scala programming language provides powerful constructs for expressing both object orientation and abstraction. This book provides students with these tools of object orientation to help them structure solutions to larger, more complex problems, and to expand on their knowledge of abstraction so that they can make their code more powerful and flexible. The book also illustrates key concepts through the creation of data structures, showing how data structures can be written, and the strengths and weaknesses of each one. Libraries that provide the functionality needed to do real programming are also explored in the text, including GUIs, multithreading, and networking. The book is filled with end-of-chapter projects and exercises, and the authors have also posted a number of different supplements on the book website. Video lectures for each chapter in the book are also available on YouTube. The videos show construction of code from the ground up and this type of "live coding" is invaluable for learning to program, as it allows students into the mind of a more experienced programmer, where they can see the thought processes associated with the development of the code. About the Authors Mark Lewis is an Associate Professor at Trinity University. He teaches a number of different courses, spanning from first semester introductory courses to advanced seminars. His research interests included simulations and modeling, programming languages, and numerical modeling of rings around planets with nearby moons. Lisa Lacher is an Assistant Professor at the University of Houston, Clear Lake with over 25 years of professional software development experience. She teaches a number of different courses spanning from first semester introductory courses to graduate level courses. Her research interests include Computer Science Education, Agile Software Development, Human Computer Interaction and Usability Engineering, as well as Measurement and Empirical Software Engineering.
Koffman and Wolfgang introduce data structures in the context of C++ programming. They embed the design and implementation of data structures into the practice of sound software design principles that are introduced early and reinforced by 20 case studies. Data structures are introduced in the C++ STL format whenever possible. Each new data structure is introduced by describing its interface in the STL. Next, one or two simpler applications are discussed then the data structure is implemented following the interface previously introduced. Finally, additional advanced applications are covered in the case studies, and the cases use the STL. In the implementation of each data structure, the authors encourage students to perform a thorough analysis of the design approach and expected performance before actually undertaking detailed design and implementation. Students gain an understanding of why different data structures are needed, the applications they are suited for, and the advantages and disadvantages of their possible implementations. Case studies follow a five-step process (problem specification, analysis, design, implementation, and testing) that has been adapted to object-oriented programming. Students are encouraged to think critically about the five-step process and use it in their problem solutions. Several problems have extensive discussions of testing and include methods that automate the testing process. Some cases are revisited in later chapters and new solutions are provided that use different data structures. The text assumes a first course in programming and is designed for Data Structures or the second course in programming, especially those courses that include coverage of OO design and algorithms. A C++ primer is provided for students who have taken a course in another programming language or for those who need a review in C++. Finally, more advanced coverage of C++ is found in an appendix. Course Hierarchy: Course is the second course in the CS curriculum Required of CS majors Course names include Data Structures and Data Structures & Algorithms