Cyclotomic Fields I and II

Cyclotomic Fields I and II

Author: Serge Lang

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 449

ISBN-13: 1461209870

DOWNLOAD EBOOK

Kummer's work on cyclotomic fields paved the way for the development of algebraic number theory in general by Dedekind, Weber, Hensel, Hilbert, Takagi, Artin and others. However, the success of this general theory has tended to obscure special facts proved by Kummer about cyclotomic fields which lie deeper than the general theory. For a long period in the 20th century this aspect of Kummer's work seems to have been largely forgotten, except for a few papers, among which are those by Pollaczek [Po], Artin-Hasse [A-H] and Vandiver [Va]. In the mid 1950's, the theory of cyclotomic fields was taken up again by Iwasawa and Leopoldt. Iwasawa viewed cyclotomic fields as being analogues for number fields of the constant field extensions of algebraic geometry, and wrote a great sequence of papers investigating towers of cyclotomic fields, and more generally, Galois extensions of number fields whose Galois group is isomorphic to the additive group of p-adic integers. Leopoldt concentrated on a fixed cyclotomic field, and established various p-adic analogues of the classical complex analytic class number formulas. In particular, this led him to introduce, with Kubota, p-adic analogues of the complex L-functions attached to cyclotomic extensions of the rationals. Finally, in the late 1960's, Iwasawa [Iw 11] made the fundamental discovery that there was a close connection between his work on towers of cyclotomic fields and these p-adic L-functions of Leopoldt - Kubota.


Introduction to Cyclotomic Fields

Introduction to Cyclotomic Fields

Author: Lawrence C. Washington

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 504

ISBN-13: 1461219345

DOWNLOAD EBOOK

This text on a central area of number theory covers p-adic L-functions, class numbers, cyclotomic units, Fermat’s Last Theorem, and Iwasawa’s theory of Z_p-extensions. This edition contains a new chapter on the work of Thaine, Kolyvagin, and Rubin, including a proof of the Main Conjecture, as well as a chapter on other recent developments, such as primality testing via Jacobi sums and Sinnott’s proof of the vanishing of Iwasawa’s f-invariant.


Cyclotomic Fields and Zeta Values

Cyclotomic Fields and Zeta Values

Author: John Coates

Publisher: Springer Science & Business Media

Published: 2006-10-03

Total Pages: 120

ISBN-13: 3540330690

DOWNLOAD EBOOK

Written by two leading workers in the field, this brief but elegant book presents in full detail the simplest proof of the "main conjecture" for cyclotomic fields. Its motivation stems not only from the inherent beauty of the subject, but also from the wider arithmetic interest of these questions. From the reviews: "The text is written in a clear and attractive style, with enough explanation helping the reader orientate in the midst of technical details." --ZENTRALBLATT MATH


Cyclotomic Fields II

Cyclotomic Fields II

Author: S. Lang

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 174

ISBN-13: 146840086X

DOWNLOAD EBOOK

This second volume incorporates a number of results which were discovered and/or systematized since the first volume was being written. Again, I limit myself to the cyclotomic fields proper without introducing modular func tions. As in the first volume, the main concern is with class number formulas, Gauss sums, and the like. We begin with the Ferrero-Washington theorems, proving Iwasawa's conjecture that the p-primary part of the ideal class group in the cyclotomic Zp-extension of a cyclotomic field grows linearly rather than exponentially. This is first done for the minus part (the minus referring, as usual, to the eigenspace for complex conjugation), and then it follows for the plus part because of results bounding the plus part in terms of the minus part. Kummer had already proved such results (e.g. if p, (h; then p, (h;). These are now formulated in ways applicable to the Iwasawa invariants, following Iwasawa himself. After that we do what amounts to " Dwork theory," to derive the Gross Koblitz formula expressing Gauss sums in terms of the p-adic gamma function. This lifts Stickel berger's theorem p-adically. Half of the proof relies on a course of Katz, who had first obtained Gauss sums as limits of certain factorials, and thought of using Washnitzer-Monsky cohomology to prove the Gross-Koblitz formula


Introduction to Cyclotomic Fields

Introduction to Cyclotomic Fields

Author: Lawrence C. Washington

Publisher: Springer Science & Business Media

Published: 1997

Total Pages: 508

ISBN-13: 9780387947624

DOWNLOAD EBOOK

This text on a central area of number theory covers p-adic L-functions, class numbers, cyclotomic units, Fermat’s Last Theorem, and Iwasawa’s theory of Z_p-extensions. This edition contains a new chapter on the work of Thaine, Kolyvagin, and Rubin, including a proof of the Main Conjecture, as well as a chapter on other recent developments, such as primality testing via Jacobi sums and Sinnott’s proof of the vanishing of Iwasawa’s f-invariant.


Sequences, Subsequences, and Consequences

Sequences, Subsequences, and Consequences

Author: Solomon W. Golomb

Publisher: Springer Science & Business Media

Published: 2007-12-13

Total Pages: 227

ISBN-13: 3540774033

DOWNLOAD EBOOK

Interested readers will find here the thoroughly refereed post-proceedings of the International Workshop of Sequences, Subsequences and Consequences, SSC 2007, held in Los Angeles, USA, in 2007. The 16 revised invited full papers and one revised contributed paper are presented together with three keynote lectures and were carefully reviewed and selected for the book. The theory of sequences has found practical applications in many areas of coded communications and in cryptography.


The Theory of Classical Valuations

The Theory of Classical Valuations

Author: Paulo Ribenboim

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 407

ISBN-13: 1461205514

DOWNLOAD EBOOK

Valuation theory is used constantly in algebraic number theory and field theory, and is currently gaining considerable research interest. Ribenboim fills a unique niche in the literature as he presents one of the first introductions to classical valuation theory in this up-to-date rendering of the authors long-standing experience with the applications of the theory. The presentation is fully up-to-date and will serve as a valuable resource for students and mathematicians.


Number Fields

Number Fields

Author: Daniel A. Marcus

Publisher: Springer

Published: 2018-07-05

Total Pages: 213

ISBN-13: 3319902334

DOWNLOAD EBOOK

Requiring no more than a basic knowledge of abstract algebra, this text presents the mathematics of number fields in a straightforward, pedestrian manner. It therefore avoids local methods and presents proofs in a way that highlights the important parts of the arguments. Readers are assumed to be able to fill in the details, which in many places are left as exercises.


Number Theory

Number Theory

Author: Helmut Koch

Publisher: American Mathematical Soc.

Published: 2000

Total Pages: 390

ISBN-13: 9780821820544

DOWNLOAD EBOOK

Algebraic number theory is one of the most refined creations in mathematics. It has been developed by some of the leading mathematicians of this and previous centuries. The primary goal of this book is to present the essential elements of algebraic number theory, including the theory of normal extensions up through a glimpse of class field theory. Following the example set for us by Kronecker, Weber, Hilbert and Artin, algebraic functions are handled here on an equal footing with algebraic numbers. This is done on the one hand to demonstrate the analogy between number fields and function fields, which is especially clear in the case where the ground field is a finite field. On the other hand, in this way one obtains an introduction to the theory of 'higher congruences' as an important element of 'arithmetic geometry'. Early chapters discuss topics in elementary number theory, such as Minkowski's geometry of numbers, public-key cryptography and a short proof of the Prime Number Theorem, following Newman and Zagier. Next, some of the tools of algebraic number theory are introduced, such as ideals, discriminants and valuations. These results are then applied to obtain results about function fields, including a proof of the Riemann-Roch Theorem and, as an application of cyclotomic fields, a proof of the first case of Fermat's Last Theorem. There are a detailed exposition of the theory of Hecke $L$-series, following Tate, and explicit applications to number theory, such as the Generalized Riemann Hypothesis. Chapter 9 brings together the earlier material through the study of quadratic number fields. Finally, Chapter 10 gives an introduction to class field theory. The book attempts as much as possible to give simple proofs. It can be used by a beginner in algebraic number theory who wishes to see some of the true power and depth of the subject. The book is suitable for two one-semester courses, with the first four chapters serving to develop the basic material. Chapters 6 through 9 could be used on their own as a second semester course.


Topics in Galois Fields

Topics in Galois Fields

Author: Dirk Hachenberger

Publisher: Springer Nature

Published: 2020-09-29

Total Pages: 785

ISBN-13: 3030608069

DOWNLOAD EBOOK

This monograph provides a self-contained presentation of the foundations of finite fields, including a detailed treatment of their algebraic closures. It also covers important advanced topics which are not yet found in textbooks: the primitive normal basis theorem, the existence of primitive elements in affine hyperplanes, and the Niederreiter method for factoring polynomials over finite fields. We give streamlined and/or clearer proofs for many fundamental results and treat some classical material in an innovative manner. In particular, we emphasize the interplay between arithmetical and structural results, and we introduce Berlekamp algebras in a novel way which provides a deeper understanding of Berlekamp's celebrated factorization algorithm. The book provides a thorough grounding in finite field theory for graduate students and researchers in mathematics. In view of its emphasis on applicable and computational aspects, it is also useful for readers working in information and communication engineering, for instance, in signal processing, coding theory, cryptography or computer science.