This book presents the proceedings of the third Vehicle and Automotive Engineering conference, reflecting the outcomes of theoretical and practical studies and outlining future development trends in a broad field of automotive research. The conference’s main themes included design, manufacturing, economic and educational topics.
This open access book shows some of the highlights presented at the XV Ibero-American Congress of Mechanical Engineering. The papers explore the forefront of Mechanical Engineering, containing research into fluid mechanics, energy systems, tribology, materials science, robotics, mechatronics, biomechanics, instrumentation, thermodynamics, and mechanical sustainability.
This completely updated volume covers the design, manufacturing, and inspection of high‐productivity drilling tools (HPDT) and addresses common issues with drilling system components. It discards old notions and beliefs as it introduces scientifically and technically sound concepts and rules with detailed explanations and multiple practical examples. High‐Productivity Drilling Tools: Design and Geometry introduces the development of the concept of high‐productivity (HP) drill design and its manufacturing and application features. This book continues to develop the concept of a drilling system in the new edition and includes new practical examples. It explains how to properly design and manufacture drilling tools for a specific application and includes a detailed explanation of the design features, tool manufacturing and implementation practices, metrology of drilling and drilling tools, and the tool failure analysis. Using the coherency law as the guidelines introduced in the first edition, the new edition shows how to formulate the requirements for the components of the drilling system, pointing out that the drilling tool is the key component to be improved. This practical book should be on the shelves of all industrial engineers, those working in production and manufacturing, process designers, tool material designers, cutting tool designers, and quality specialists. Researchers, senior undergraduate students, and graduate students will also find this book full of very helpful reference information. This book is also available as a set - Drills: High-Productivity Drilling Tools, 2-Volume Set (9781032203508).
Finish Manufacturing Processes are those final stage processing techniques which are deployed to bring a product to readiness for marketing and putting in service. Over recent decades a number of finish manufacturing processes have been newly developed by researchers and technologists. Many of these developments have been reported and illustrated in existing literature in a piecemeal manner or in relation only to specific applications. For the first time, Comprehensive Materials Finishing, Three Volume Set integrates a wide body of this knowledge and understanding into a single, comprehensive work. Containing a mixture of review articles, case studies and research findings resulting from R & D activities in industrial and academic domains, this reference work focuses on how some finish manufacturing processes are advantageous for a broad range of technologies. These include applicability, energy and technological costs as well as practicability of implementation. The work covers a wide range of materials such as ferrous, non-ferrous and polymeric materials. There are three main distinct types of finishing processes: Surface Treatment by which the properties of the material are modified without generally changing the physical dimensions of the surface; Finish Machining Processes by which a small layer of material is removed from the surface by various machining processes to render improved surface characteristics; and Surface Coating Processes by which the surface properties are improved by adding fine layer(s) of materials with superior surface characteristics. Each of these primary finishing processes is presented in its own volume for ease of use, making Comprehensive Materials Finishing an essential reference source for researchers and professionals at all career stages in academia and industry. Provides an interdisciplinary focus, allowing readers to become familiar with the broad range of uses for materials finishing Brings together all known research in materials finishing in a single reference for the first time Includes case studies that illustrate theory and show how it is applied in practice
In a presentation that balances theory and practice, Drills: Science and Technology of Advanced Operations details the basic concepts, terminology, and essentials of drilling. The book addresses important issues in drilling operations, and provides help with the design of such operations. It debunks many old notions and beliefs while introducing scientifically and technically sound concepts with detailed explanations. The book presents a nine-step drilling tool failure analysis methodology that includes part autopsy and tool reconstruction procedure. A special feature of the book is the presentation of special mechanisms of carbide (e.g. cobalt leaching) and polycrystalline (PCD) tool wear and failure presented and correlated with the tool design, manufacturing, and implementation practice. The author also introduces the system approach to the design of the drilling system formulating the coherency law. Using this law as the guideline, he shows how to formulate the requirement to the components of such a system, pointing out that the drilling tool is the key component to be improved. Teaching how to achieve this improvement, the book provides the comprehensive scientific and engineering foundations for drilling tool design, manufacturing, and applications of high-performance tools. It includes detailed explanations of the design features, tool manufacturing and implementation practices, metrology of drilling and drilling tools, and the tool failure analysis. It gives you the information needed for proper manufacturing and selection of a tool material for any given application.
This book covers the process and conditions of Rotary ultrasonic machining (RUM) of hard materials and summarizes the recommendation of proper machining parameters. The optimum conditions were applied for cutting edge preparation of CBN cutting inserts. The results presented in the book show that RUM is able to create controlled cutting edge preparation.
This basic source for identification of U.S. manufacturers is arranged by product in a large multi-volume set. Includes: Products & services, Company profiles and Catalog file.