A practical "hands on" guide to the machining of precision optical surfaces on optical & electronic materials. It enables readers to construct & use equipment in their own production laboratories. Primarily intended for technicians working with optical & electronic materials, it is also relevant to optical devices, metallography, ceramics, geology, gemstones, metrology & production engineering.
Covers the fundamental science of grinding and polishing by examining the chemical and mechanical interactions over many scale lengths Manufacturing next generation optics has been, and will continue to be, enablers for enhancing the performance of advanced laser, imaging, and spectroscopy systems. This book reexamines the age-old field of optical fabrication from a materials-science perspective, specifically the multiple, complex interactions between the workpiece (optic), slurry, and lap. It also describes novel characterization and fabrication techniques to improve and better understand the optical fabrication process, ultimately leading to higher quality optics with higher yield. Materials Science and Technology of Optical Fabrication is divided into two major parts. The first part describes the phenomena and corresponding process parameters affecting both the grinding and polishing processes during optical fabrication. It then relates them to the critical resulting properties of the optic (surface quality, surface figure, surface roughness, and material removal rate). The second part of the book covers a number of related topics including: developed forensic tools used to increase yield of optics with respect to surface quality (scratch/dig) and fracture loss; novel characterization and fabrication techniques used to understand/quantify the fundamental phenomena described in the first part of the book; novel and recent optical fabrication processes and their connection with the fundamental interactions; and finally, special techniques utilized to fabricate optics with high damage resistance. Focuses on the fundamentals of grinding and polishing, from a materials science viewpoint, by studying the chemical and mechanical interactions/phenomena over many scale lengths between the workpiece, slurry, and lap Explains how these phenomena affect the major characteristics of the optic workpiece—namely surface figure, surface quality, surface roughness, and material removal rate Describes methods to improve the major characteristics of the workpiece as well as improve process yield, such as through fractography and scratch forensics Covers novel characterization and fabrication techniques used to understand and quantify the fundamental phenomena of various aspects of the workpiece or fabrication process Details novel and recent optical fabrication processes and their connection with the fundamental interactions Materials Science and Technology of Optical Fabrication is an excellent guidebook for process engineers, fabrication engineers, manufacturing engineers, optical scientists, and opticians in the optical fabrication industry. It will also be helpful for students studying material science and applied optics/photonics.
Although the subject of optical design as a branch of applied physics is over one hundred years old, the use of aberration theory has changed considerably. Aberrations of Optical Systems covers elementary optics and aberration theory of various optical systems, including the use of nonaxially symmetric systems and diffractive optical elements in complex designs, such as head-up displays and the increasing use of scanning systems with laser illumination. The book provides the complete range of mathematical tools, formulae, and derivations needed for understanding the process of optical design and for planning optical design programs. While the treatment is mainly based on geometrical optics, some excursions into physical optics are made, particularly in connection with the problems of optical tolerances.
The KDP family of single crystals is composed of compounds of alkali metals with light or heavy (hydro, deutero) water and oxides of phosphate or arsenate, including ammonium, potassium, rubidium and caesium dihydro- and dideutero-phosphates, and similar arsenates. While not occurring in nature, their production exceeds that of any other water-soluble crystals and the demand for bigger and more optically pure crystals is ever increasing. KDP-Family Single Crystals is a comprehensive investigation of the crystallization mechanism for these systems. The first part of the book collects the majority of the available data on the physico-chemical analysis of these systems. This is complemented by a review of contemporary concepts related to the crystal growth dislocation mechanism under the influence of impurities, changing supersaturation, and temperature. This is not only relevant to the growth of KDP single crystals but to the majority of crystals grown from low- and high-temperature solutions. Finally, attention is given to the important problem of speeding up the production processes for the growth of these crystals while maintaining the quality of the crystals. The in-depth coverage that KDP-Family Single Crystals provides to the art of crystal growth techniques makes it an essential reference work for all those working in the field of crystal growth and to those using KDP-family crystals in quantum electronics devices.
Super-radiance: Multiatomic Coherent Emission provides a comprehensive, self-contained account of the theory and experiments of the quantum optic phenomenon of superradiance. Contributed by highly regarded researchers in the field, the book first presents the theory of superradiance at a level suitable for graduate physicists approaching the subject for the first time. This introduction is followed by a more rigorous treatment that is supported by the analysis of experiments dealing with superradiance and by a discussion on the possible uses of the effect in other areas of optics and electronics. The theoretical and experimental results presented in this book will introduce a wide audience to this important area of quantum optics.
The Fabry-Perot Interferometer: History, Theory, Practice and Applications presents an invaluable introduction to the Fabry-Perot interferometer, including a brief overview of its history, a look at its applications, and plenty of practical advice on how to use the instrument.
Professor Yurii A. Anan'ev has a long-standing international reputation for his publications on optical beams and resonators. Now many of his contributions will be readily available for the first time in a book. The generation of maximum power, minimum divergence beams from laser resonators is probably the most important topic in quantum electronics and optics today. The only book of its kind, Laser Resonators and the Beam Divergence Problem covers not only the theory, but also the applications of resonators to real systems as opposed to idealized models. Each rigorous examination of an optical configuration is accompanied by a detailed discussion of its associated applications and of the considerations for the user in practical work. The book contains a wealth of information on the developments in resonator technology, including much material previously unavailable outside the Soviet Union. It is an essential reference source to every researcher in laser science and technology.
This volwne contains the Proceedings of a two-week summer conference titled "Advances in Integrated Optics" held June 1-9, 1993, in Erice, Sicily. This was the 18th annual course organized by the International School of Quantum Electronics, under the auspices of the "Ettore Majorana" Centre for Scientific Culture. The term Integrated Optics signifies guided-wave optical circuits consisting of two or more devices on a single substrate. Since its inception in the late 1960's, Integrated Optics has evolved from a specialized research topic into a broad field of work, ranging from basic research through commercial applications. Today many devices are available on market while a big effort is devolved to research on integrated nonlinear optical devices. This conference was organized to provide a comprehensive survey of the frontiers of this technology, including fundamental concepts, nonlinear optical materials, devices both in the linear and nonlinear regimes, and selected applications. These Proceedings update and augment the material contained in a previous ISQE volume, "Integrated Optics: Physics and Applications", S. Martellucci and A. N. Chester, Eds. , NATO ASI Series B, Vol. 91 (Plenum, 1983). For some closely related technology, the reader many also wish to consult the ISQE volumes: "Optical Fiber Sensors", A. N. Chester, S. Martellucci and A. M. Scheggi, Eds. , NATO ASI Series E, Vol. 132 (Nijhoff, 1987) ; and, "Nonlinear Optics and Optical Computing", S. Martellucci and A. N. Chester, Eds. , E. Majorana Int'! Science Series, Vol. 49 (plenum, 1990).
Susceptibility Tensors for Nonlinear Optics is a unique and invaluable reference book with accompanying software. Starting from basic principles, the book presents a detailed introduction to the concept of optical susceptibilities of crystalline media. Substantial appendices include useful tables of third-, fourth-, and fifth-rank susceptibility tensors for major nonlinear optical effects. Integral to the book is an entirely original TURBO RANK software package (compatible with PCs running MS-DOS and Windows) that allows the calculation of the symmetry of material tensors up to seventh rank, effectively superseding conventional reference tables of high rank tensors. This package is also useful for scientists working in solid state physics, crystallography, acoustics, and materials engineering.