This book discusses recent developments in and contemporary research on summability theory, including general summability methods, direct theorems on summability, absolute and strong summability, special methods of summability, functional analytic methods in summability, and related topics and applications. All contributing authors are eminent scientists, researchers and scholars in their respective fields, and hail from around the world. The book can be used as a textbook for graduate and senior undergraduate students, and as a valuable reference guide for researchers and practitioners in the fields of summability theory and functional analysis. Summability theory is generally used in analysis and applied mathematics. It plays an important part in the engineering sciences, and various aspects of the theory have long since been studied by researchers all over the world.
An introductory course in summability theory for students, researchers, physicists, and engineers In creating this book, the authors’ intent was to provide graduate students, researchers, physicists, and engineers with a reasonable introduction to summability theory. Over the course of nine chapters, the authors cover all of the fundamental concepts and equations informing summability theory and its applications, as well as some of its lesser known aspects. Following a brief introduction to the history of summability theory, general matrix methods are introduced, and the Silverman-Toeplitz theorem on regular matrices is discussed. A variety of special summability methods, including the Nörlund method, the Weighted Mean method, the Abel method, and the (C, 1) - method are next examined. An entire chapter is devoted to a discussion of some elementary Tauberian theorems involving certain summability methods. Following this are chapters devoted to matrix transforms of summability and absolute summability domains of reversible and normal methods; the notion of a perfect matrix method; matrix transforms of summability and absolute summability domains of the Cesàro and Riesz methods; convergence and the boundedness of sequences with speed; and convergence, boundedness, and summability with speed. • Discusses results on matrix transforms of several matrix methods • The only English-language textbook describing the notions of convergence, boundedness, and summability with speed, as well as their applications in approximation theory • Compares the approximation orders of Fourier expansions in Banach spaces by different matrix methods • Matrix transforms of summability domains of regular perfect matrix methods are examined • Each chapter contains several solved examples and end-of-chapter exercises, including hints for solutions An Introductory Course in Summability Theory is the ideal first text in summability theory for graduate students, especially those having a good grasp of real and complex analysis. It is also a valuable reference for mathematics researchers and for physicists and engineers who work with Fourier series, Fourier transforms, or analytic continuation. ANTS AASMA, PhD, is Associate Professor of Mathematical Economics in the Department of Economics and Finance at Tallinn University of Technology, Estonia. HEMEN DUTTA, PhD, is Senior Assistant Professor of Mathematics at Gauhati University, India. P.N. NATARAJAN, PhD, is Formerly Professor and Head of the Department of Mathematics, Ramakrishna Mission Vivekananda College, Chennai, Tamilnadu, India.
This book explores several important aspects of recent developments in the interdisciplinary applications of mathematical analysis (MA), and highlights how MA is now being employed in many areas of scientific research. Each of the 23 carefully reviewed chapters was written by experienced expert(s) in respective field, and will enrich readers’ understanding of the respective research problems, providing them with sufficient background to understand the theories, methods and applications discussed. The book’s main goal is to highlight the latest trends and advances, equipping interested readers to pursue further research of their own. Given its scope, the book will especially benefit graduate and PhD students, researchers in the applied sciences, educators, and engineers with an interest in recent developments in the interdisciplinary applications of mathematical analysis.
This book features a collection of papers by plenary, semi-plenary and invited contributors at IWOTA2021, held at Chapman University in hybrid format in August 2021. The topics span areas of current research in operator theory, mathematical physics, and complex analysis.
This book investigates the convergence and summability of both one-dimensional and multi-dimensional Fourier transforms, as well as the theory of Hardy spaces. To do so, it studies a general summability method known as theta-summation, which encompasses all the well-known summability methods, such as the Fejér, Riesz, Weierstrass, Abel, Picard, Bessel and Rogosinski summations. Following on the classic books by Bary (1964) and Zygmund (1968), this is the first book that considers strong summability introduced by current methodology. A further unique aspect is that the Lebesgue points are also studied in the theory of multi-dimensional summability. In addition to classical results, results from the past 20-30 years – normally only found in scattered research papers – are also gathered and discussed, offering readers a convenient “one-stop” source to support their work. As such, the book will be useful for researchers, graduate and postgraduate students alike.
The evolution of soft computing applications has offered a multitude of methodologies and techniques that are useful in facilitating new ways to address practical and real scenarios in a variety of fields. In particular, these concepts have created significant developments in the engineering field. Soft Computing Techniques and Applications in Mechanical Engineering is a pivotal reference source for the latest research findings on a comprehensive range of soft computing techniques applied in various fields of mechanical engineering. Featuring extensive coverage on relevant areas such as thermodynamics, fuzzy computing, and computational intelligence, this publication is an ideal resource for students, engineers, research scientists, and academicians involved in soft computing techniques and applications in mechanical engineering areas.
Topics in Contemporary Mathematical Analysis and Applications encompasses several contemporary topics in the field of mathematical analysis, their applications, and relevancies in other areas of research and study. The readers will find developments concerning the topics presented to a reasonable extent with various new problems for further study. Each chapter carefully presents the related problems and issues, methods of solutions, and their possible applications or relevancies in other scientific areas. Aims at enriching the understanding of methods, problems, and applications Offers an understanding of research problems by presenting the necessary developments in reasonable details Discusses applications and uses of operator theory, fixed-point theory, inequalities, bi-univalent functions, functional equations, and scalar-objective programming, and presents various associated problems and ways to solve such problems This book is written for individual researchers, educators, students, and department libraries.
This book contains original research papers presented at the International Conference on Mathematical Modelling, Applied Analysis and Computation, held at JECRC University, Jaipur, India, on 6-8 July, 2018. Organized into 20 chapters, the book focuses on theoretical and applied aspects of various types of mathematical modelling such as equations of various types, fuzzy mathematical models, automata, Petri nets and bond graphs for systems of dynamic nature and the usage of numerical techniques in handling modern problems of science, engineering and finance. It covers the applications of mathematical modelling in physics, chemistry, biology, mechanical engineering, civil engineering, computer science, social science and finance. A wide variety of dynamical systems like deterministic, stochastic, continuous, discrete or hybrid, with respect to time, are discussed in the book. It provides the mathematical modelling of various problems arising in science and engineering, and also new efficient numerical approaches for solving linear and nonlinear problems and rigorous mathematical theories, which can be used to analyze a different kind of mathematical models. The conference was aimed at fostering cooperation among students and researchers in areas of applied analysis, engineering and computation with the deliberations to inculcate new research ideas in their relevant fields. This volume will provide a comprehensive introduction to recent theories and applications of mathematical modelling and numerical simulation, which will be a valuable resource for graduate students and researchers of mathematical modelling and industrial mathematics.
This book is aimed at both experts and non-experts with an interest in getting acquainted with sequence spaces, matrix transformations and their applications. It consists of several new results which are part of the recent research on these topics. It provides different points of view in one volume, e.g. their topological properties, geometry and summability, fuzzy valued study and more. This book presents the important role sequences and series play in everyday life, it covers geometry of Banach Sequence Spaces, it discusses the importance of generalized limit, it offers spectrum and fine spectrum of several linear operators and includes fuzzy valued sequences which exhibits the study of sequence spaces in fuzzy settings. This book is the main attraction for those who work in Sequence Spaces, Summability Theory and would also serve as a good source of reference for those involved with any topic of Real or Functional Analysis.
Zusammenfassung: Felix Hausdorff is a singular phenomenon in the history of science. As a mathematician, he played a major role in shaping the development of modern mathematics in the 20th century. He founded general topology as an independent mathematical discipline, while enriching set theory with a number of fundamental concepts and results. His general approach to measure and dimension led to profound developments in numerous mathematical disciplines, and today Hausdorff dimension plays a central role in fractal theory with its many fascinating applications by means of computer graphics. Hausdorff 's remarkable mathematical versatility is reflected in his published work: today, no fewer than thirteen concepts, theorems and procedures carry his name. Yet he was not only a creative mathematician - Hausdorff was also an original philosophical thinker, a poet, essayist and man of letters. Under the pseudonym Paul Mongré, he published a volume of aphorisms, an epistemological study, a book of poetry, an oft-performed play, and a number of notable essays in leading literary journals. As a Jew, Felix Hausdorff was increasingly persecuted and humiliated under the National Socialist dictatorship. When deportation to a concentration camp was imminent, he, along with his wife and sister-in law, decided to take their own lives. This book will be of interest to historians and mathematicians already fascinated by the rich life of Felix Hausdorff, as well as to those readers who wish to immerse themselves in the intricate web of intellectual and political transformations during this pivotal period in European history