Cure Models

Cure Models

Author: Yingwei Peng

Publisher: CRC Press

Published: 2021-03-22

Total Pages: 268

ISBN-13: 0429629680

DOWNLOAD EBOOK

Cure Models: Methods, Applications and Implementation is the first book in the last 25 years that provides a comprehensive and systematic introduction to the basics of modern cure models, including estimation, inference, and software. This book is useful for statistical researchers and graduate students, and practitioners in other disciplines to have a thorough review of modern cure model methodology and to seek appropriate cure models in applications. The prerequisites of this book include some basic knowledge of statistical modeling, survival models, and R and SAS for data analysis. The book features real-world examples from clinical trials and population-based studies and a detailed introduction to R packages, SAS macros, and WinBUGS programs to fit some cure models. The main topics covered include the foundation of statistical estimation and inference of cure models for independent and right-censored survival data, cure modeling for multivariate, recurrent-event, and competing-risks survival data, and joint modeling with longitudinal data, statistical testing for the existence and difference of cure rates and sufficient follow-up, new developments in Bayesian cure models, applications of cure models in public health research and clinical trials.


Bayesian Survival Analysis

Bayesian Survival Analysis

Author: Joseph G. Ibrahim

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 494

ISBN-13: 1475734476

DOWNLOAD EBOOK

Survival analysis arises in many fields of study including medicine, biology, engineering, public health, epidemiology, and economics. This book provides a comprehensive treatment of Bayesian survival analysis. It presents a balance between theory and applications, and for each class of models discussed, detailed examples and analyses from case studies are presented whenever possible. The applications are all from the health sciences, including cancer, AIDS, and the environment.


Population-based Cancer Survival Analysis

Population-based Cancer Survival Analysis

Author: Paul W. Dickman

Publisher: Wiley

Published: 2022-12-27

Total Pages: 0

ISBN-13: 9780470028599

DOWNLOAD EBOOK

There has been increased interest in studying cancer patient survival in recent years, which has prompted advances in methods for estimating and modeling cancer patient survival. This book is the first focused on this topic, and uses real data and software to illustrate the methods involved. The supporting website provides code to enable readers to reproduce the analysis top illustrate the examples included in the book. The book presents methods for population-based cancer survival analysis, that is, the analysis of patient survival using data collected by population-based cancer registries. The primary focus will be on the statistical methods but non-statistical issues that arise in population-based studies of cancer patient survival, such as registration, coding and classification, and follow up procedures are also discussed.


Handbook of Survival Analysis

Handbook of Survival Analysis

Author: John P. Klein

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 635

ISBN-13: 146655567X

DOWNLOAD EBOOK

Handbook of Survival Analysis presents modern techniques and research problems in lifetime data analysis. This area of statistics deals with time-to-event data that is complicated by censoring and the dynamic nature of events occurring in time. With chapters written by leading researchers in the field, the handbook focuses on advances in survival analysis techniques, covering classical and Bayesian approaches. It gives a complete overview of the current status of survival analysis and should inspire further research in the field. Accessible to a wide range of readers, the book provides: An introduction to various areas in survival analysis for graduate students and novices A reference to modern investigations into survival analysis for more established researchers A text or supplement for a second or advanced course in survival analysis A useful guide to statistical methods for analyzing survival data experiments for practicing statisticians


Advanced Survival Models

Advanced Survival Models

Author: Catherine Legrand

Publisher: CRC Press

Published: 2021-03-22

Total Pages: 361

ISBN-13: 0429622554

DOWNLOAD EBOOK

Survival data analysis is a very broad field of statistics, encompassing a large variety of methods used in a wide range of applications, and in particular in medical research. During the last twenty years, several extensions of "classical" survival models have been developed to address particular situations often encountered in practice. This book aims to gather in a single reference the most commonly used extensions, such as frailty models (in case of unobserved heterogeneity or clustered data), cure models (when a fraction of the population will not experience the event of interest), competing risk models (in case of different types of event), and joint survival models for a time-to-event endpoint and a longitudinal outcome. Features Presents state-of-the art approaches for different advanced survival models including frailty models, cure models, competing risk models and joint models for a longitudinal and a survival outcome Uses consistent notation throughout the book for the different techniques presented Explains in which situation each of these models should be used, and how they are linked to specific research questions Focuses on the understanding of the models, their implementation, and their interpretation, with an appropriate level of methodological development for masters students and applied statisticians Provides references to existing R packages and SAS procedure or macros, and illustrates the use of the main ones on real datasets This book is primarily aimed at applied statisticians and graduate students of statistics and biostatistics. It can also serve as an introductory reference for methodological researchers interested in the main extensions of classical survival analysis.


Developing a Protocol for Observational Comparative Effectiveness Research: A User's Guide

Developing a Protocol for Observational Comparative Effectiveness Research: A User's Guide

Author: Agency for Health Care Research and Quality (U.S.)

Publisher: Government Printing Office

Published: 2013-02-21

Total Pages: 236

ISBN-13: 1587634236

DOWNLOAD EBOOK

This User’s Guide is a resource for investigators and stakeholders who develop and review observational comparative effectiveness research protocols. It explains how to (1) identify key considerations and best practices for research design; (2) build a protocol based on these standards and best practices; and (3) judge the adequacy and completeness of a protocol. Eleven chapters cover all aspects of research design, including: developing study objectives, defining and refining study questions, addressing the heterogeneity of treatment effect, characterizing exposure, selecting a comparator, defining and measuring outcomes, and identifying optimal data sources. Checklists of guidance and key considerations for protocols are provided at the end of each chapter. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews. More more information, please consult the Agency website: www.effectivehealthcare.ahrq.gov)


Mohs Micrographic Surgery

Mohs Micrographic Surgery

Author: Stephen N. Snow

Publisher: Univ of Wisconsin Press

Published: 2004

Total Pages: 464

ISBN-13: 9780299204709

DOWNLOAD EBOOK

Mohs Micrographic Surgery, an advanced treatment procedure for skin cancer, offers the highest potential for recovery--even if the skin cancer has been previously treated. This procedure is a state-of-the-art treatment in which the physician serves as surgeon, pathologist, and reconstructive surgeon. It relies on the accuracy of a microscope to trace and ensure removal of skin cancer down to its roots. This procedure allows dermatologists trained in Mohs Surgery to see beyond the visible disease and to precisely identify and remove the entire tumor, leaving healthy tissue unharmed. This procedure is most often used in treating two of the most common forms of skin cancer: basal cell carcinoma and squamous cell carcinoma. The cure rate for Mohs Micrographic Surgery is the highest of all treatments for skin cancer--up to 99 percent even if other forms of treatment have failed. This procedure, the most exact and precise method of tumor removal, minimizes the chance of regrowth and lessens the potential for scarring or disfigurement


The Frailty Model

The Frailty Model

Author: Luc Duchateau

Publisher: Springer Science & Business Media

Published: 2007-10-23

Total Pages: 329

ISBN-13: 038772835X

DOWNLOAD EBOOK

Readers will find in the pages of this book a treatment of the statistical analysis of clustered survival data. Such data are encountered in many scientific disciplines including human and veterinary medicine, biology, epidemiology, public health and demography. A typical example is the time to death in cancer patients, with patients clustered in hospitals. Frailty models provide a powerful tool to analyze clustered survival data. In this book different methods based on the frailty model are described and it is demonstrated how they can be used to analyze clustered survival data. All programs used for these examples are available on the Springer website.


Frailty Models in Survival Analysis

Frailty Models in Survival Analysis

Author: Andreas Wienke

Publisher: CRC Press

Published: 2010-07-26

Total Pages: 324

ISBN-13: 9781420073911

DOWNLOAD EBOOK

The concept of frailty offers a convenient way to introduce unobserved heterogeneity and associations into models for survival data. In its simplest form, frailty is an unobserved random proportionality factor that modifies the hazard function of an individual or a group of related individuals. Frailty Models in Survival Analysis presents a comprehensive overview of the fundamental approaches in the area of frailty models. The book extensively explores how univariate frailty models can represent unobserved heterogeneity. It also emphasizes correlated frailty models as extensions of univariate and shared frailty models. The author analyzes similarities and differences between frailty and copula models; discusses problems related to frailty models, such as tests for homogeneity; and describes parametric and semiparametric models using both frequentist and Bayesian approaches. He also shows how to apply the models to real data using the statistical packages of R, SAS, and Stata. The appendix provides the technical mathematical results used throughout. Written in nontechnical terms accessible to nonspecialists, this book explains the basic ideas in frailty modeling and statistical techniques, with a focus on real-world data application and interpretation of the results. By applying several models to the same data, it allows for the comparison of their advantages and limitations under varying model assumptions. The book also employs simulations to analyze the finite sample size performance of the models.


Joint Models for Longitudinal and Time-to-Event Data

Joint Models for Longitudinal and Time-to-Event Data

Author: Dimitris Rizopoulos

Publisher: CRC Press

Published: 2012-06-22

Total Pages: 279

ISBN-13: 1439872864

DOWNLOAD EBOOK

In longitudinal studies it is often of interest to investigate how a marker that is repeatedly measured in time is associated with a time to an event of interest, e.g., prostate cancer studies where longitudinal PSA level measurements are collected in conjunction with the time-to-recurrence. Joint Models for Longitudinal and Time-to-Event Data: With Applications in R provides a full treatment of random effects joint models for longitudinal and time-to-event outcomes that can be utilized to analyze such data. The content is primarily explanatory, focusing on applications of joint modeling, but sufficient mathematical details are provided to facilitate understanding of the key features of these models. All illustrations put forward can be implemented in the R programming language via the freely available package JM written by the author. All the R code used in the book is available at: http://jmr.r-forge.r-project.org/