Macromolecular Crystallography

Macromolecular Crystallography

Author: Maria Armenia Carrondo

Publisher: Springer

Published: 2011-12-01

Total Pages: 213

ISBN-13: 9400725302

DOWNLOAD EBOOK

This volume is a collection of the contributions presented at the 42nd Erice Crystallographic Course whose main objective was to train the younger generation on advanced methods and techniques for examining structural and dynamic aspects of biological macromolecules. The papers review the techniques used to study protein assemblies and their dynamics, including X-ray diffraction and scattering, electron cryo-electron microscopy, electro nanospray mass spectrometry, NMR, protein docking and molecular dynamics. A key theme throughout the book is the dependence of modern structural science on multiple experimental and computational techniques, and it is the development of these techniques and their integration that will take us forward in the future.


Crystals, X-rays and Proteins

Crystals, X-rays and Proteins

Author: Dennis Sherwood

Publisher: Oxford University Press

Published: 2011

Total Pages: 640

ISBN-13: 019955904X

DOWNLOAD EBOOK

Information derived from X-ray crystal structures of biological molecules allows us to explain their functions in living organisms in extraordinary detail, and to develop drugs to treat disease. This book describes the principles and practice of X-ray diffraction as a key technique at the forefront of new discoveries in biology and medicine.


The Next Generation in Membrane Protein Structure Determination

The Next Generation in Membrane Protein Structure Determination

Author: Isabel Moraes

Publisher: Springer

Published: 2016-08-23

Total Pages: 188

ISBN-13: 3319350722

DOWNLOAD EBOOK

This book reviews current techniques used in membrane protein structural biology, with a strong focus on practical issues. The study of membrane protein structures not only provides a basic understanding of life at the molecular level but also helps in the rational and targeted design of new drugs with reduced side effects. Today, about 60% of the commercially available drugs target membrane proteins and it is estimated that nearly 30% of proteins encoded in the human genome are membrane proteins. In recent years much effort has been put towards innovative developments to overcome the numerous obstacles associated with the structure determination of membrane proteins. This book reviews a variety of recent techniques that are essential to any modern researcher in the field of membrane protein structural biology. The topics that are discussed are not commonly found in textbooks. The scope of this book includes: Expression screening using fluorescent proteins The use of detergents in membrane protein research The use of NMR Synchrotron developments in membrane protein structural biology Visualisation and X-ray data collection of microcrystals X-ray diffraction data analysis from multiple crystals Serial millisecond crystallography Serial femtosecond crystallography Membrane protein structures in drug discovery The information provided in this book should be of interest to anyone working in the area of structural biology. Students will find carefully prepared overviews of basic ideas and advanced protein scientists will find the level of detail required to apply the material directly to their day to day work. Chapters 4, 5, 6, 8 and 9 of this book are published open access under a CC BY 4.0 license at link.springer.com.


Structural Biology in Drug Discovery

Structural Biology in Drug Discovery

Author: Jean-Paul Renaud

Publisher: John Wiley & Sons

Published: 2020-01-09

Total Pages: 1437

ISBN-13: 1118900502

DOWNLOAD EBOOK

With the most comprehensive and up-to-date overview of structure-based drug discovery covering both experimental and computational approaches, Structural Biology in Drug Discovery: Methods, Techniques, and Practices describes principles, methods, applications, and emerging paradigms of structural biology as a tool for more efficient drug development. Coverage includes successful examples, academic and industry insights, novel concepts, and advances in a rapidly evolving field. The combined chapters, by authors writing from the frontlines of structural biology and drug discovery, give readers a valuable reference and resource that: Presents the benefits, limitations, and potentiality of major techniques in the field such as X-ray crystallography, NMR, neutron crystallography, cryo-EM, mass spectrometry and other biophysical techniques, and computational structural biology Includes detailed chapters on druggability, allostery, complementary use of thermodynamic and kinetic information, and powerful approaches such as structural chemogenomics and fragment-based drug design Emphasizes the need for the in-depth biophysical characterization of protein targets as well as of therapeutic proteins, and for a thorough quality assessment of experimental structures Illustrates advances in the field of established therapeutic targets like kinases, serine proteinases, GPCRs, and epigenetic proteins, and of more challenging ones like protein-protein interactions and intrinsically disordered proteins


Advances in Protein Molecular and Structural Biology Methods

Advances in Protein Molecular and Structural Biology Methods

Author: Timir Tripathi

Publisher: Academic Press

Published: 2022-01-14

Total Pages: 716

ISBN-13: 0323902650

DOWNLOAD EBOOK

Advances in Protein Molecular and Structural Biology Methods offers a complete overview of the latest tools and methods applicable to the study of proteins at the molecular and structural level. The book begins with sections exploring tools to optimize recombinant protein expression and biophysical techniques such as fluorescence spectroscopy, NMR, mass spectrometry, cryo-electron microscopy, and X-ray crystallography. It then moves towards computational approaches, considering structural bioinformatics, molecular dynamics simulations, and deep machine learning technologies. The book also covers methods applied to intrinsically disordered proteins (IDPs)followed by chapters on protein interaction networks, protein function, and protein design and engineering. It provides researchers with an extensive toolkit of methods and techniques to draw from when conducting their own experimental work, taking them from foundational concepts to practical application. - Presents a thorough overview of the latest and emerging methods and technologies for protein study - Explores biophysical techniques, including nuclear magnetic resonance, X-ray crystallography, and cryo-electron microscopy - Includes computational and machine learning methods - Features a section dedicated to tools and techniques specific to studying intrinsically disordered proteins


Dynamics of Proteins and Nucleic Acids

Dynamics of Proteins and Nucleic Acids

Author: J. Andrew McCammon

Publisher: Cambridge University Press

Published: 1988-04-29

Total Pages: 256

ISBN-13: 9780521356527

DOWNLOAD EBOOK

This book is a self-contained introduction to the theory of atomic motion in proteins and nucleic acids. An understanding of such motion is essential because it plays a crucially important role in biological activity. The authors, both of whom are well known for their work in this field, describe in detail the major theoretical methods that are likely to be useful in the computer-aided design of drugs, enzymes and other molecules. A variety of theoretical and experimental studies is described and these are critically analyzed to provide a comprehensive picture of dynamic aspects of biomolecular structure and function. The book will be of interest to graduate students and research workers in structural biochemistry (X-ray diffraction and NMR), theoretical chemistry (liquids and polymers), biophysics, enzymology, molecular biology, pharmaceutical chemistry, genetic engineering and biotechnology.


Macromolecular Crystallography

Macromolecular Crystallography

Author: Charles W. Carter

Publisher: Gulf Professional Publishing

Published: 1997

Total Pages: 754

ISBN-13: 9780121827779

DOWNLOAD EBOOK

Annotation Accurate molecular structures is vital for rational drug design and for structure based functional studies directed toward the development of effective therapeutic agents and drugs. Crystallography can reliably predict structure, both in terms of folding and atomic details of bonding. * Phases * Map interpretation and refinement * Analysis and software.


Biomolecular Crystallography

Biomolecular Crystallography

Author: Bernhard Rupp

Publisher: Garland Science

Published: 2009-10-20

Total Pages: 832

ISBN-13: 1134064195

DOWNLOAD EBOOK

Synthesizing over thirty years of advances into a comprehensive textbook, Biomolecular Crystallography describes the fundamentals, practices, and applications of protein crystallography. Illustrated in full-color by the author, the text describes mathematical and physical concepts in accessible and accurate language. Biomolecular Crystallography will be a valuable resource for advanced undergraduate and graduate students and practitioners in structural biology, crystallography, and structural bioinformatics.


Crystallization of Membrane Proteins

Crystallization of Membrane Proteins

Author: Hartmut Michel

Publisher: CRC Press

Published: 2018-01-18

Total Pages: 343

ISBN-13: 1351088173

DOWNLOAD EBOOK

The precise knowledge of the structure of biological macromolecules forms the basis of understanding their function and their mechanism of action. It also lays the foundation for rational protein and drug design. The only method to obtain this knowledge is still crystallography. At present, the structures of about 400 proteins are known at or nearly at atomic proteins. However, only two of them are membrane proteins or complexes of the membrane proteins. The reasons for the difference is not the crystals of membrane proteins resists forming special problems when being analysed. The reason is that the membrane proteins resist into forming into well-ordered crystals. The intention of this book is to help to produce well-ordered crystals proteins and to provide guidelines, it is aimed at both biochemists and protein crystallographer‘s.