Crystallisation Driven Self-assembly of Polylactide Containing Block Copolymers Synthesised by Combination of ROP and RAFT.

Crystallisation Driven Self-assembly of Polylactide Containing Block Copolymers Synthesised by Combination of ROP and RAFT.

Author: Nikolaos Petzetakis

Publisher:

Published: 2012

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Chapter 1 is the main introduction of this work and it features the two main concepts of this study. First living polymerisation techniques are introduced with a special focus into RAFT and ROP. Secondly solution self-assembly is briefly discussed. In Chapter 2 we describe the synthesis of an amphiphilic block copolymer where the two blocks are connected through a reversible bond. A Diels-Alder (DA) adduct consisted of a maleimide-furan pair was chosen as the reversible linker. The solution self-assembly of this polymer was studied by TEM and DLS giving rise to the unexpected formation of cylindrical micelles. In Chapter 3 the main objective was to synthesise new amphiphilic block copolymers without the DA motif in order to investigate their self-assembly behaviour compared to those for DA containing polymers obtained in Chapter 2. To further understand this self-assembly behaviour our method has been extended to the synthesis of other hydrophilic blocks and end group modified polymers. In addition, some key properties of the polymers synthesised have been investigated. In Chapter 4 our main goal is to understand the origins of the cylindrical micelle formation seen in Chapter 2. We investigated the aggregation behaviour under the aqueous thermal conditions in which the PTHPA block hydrolysis is performed. Studies at different concentrations and solvent mixtures provide valuable information regarding the self-assembly mechanism. In addition, the polymers with modified end groups and the triblock copolymers synthesised in Chapter 3 are studied and all the results compared. In Chapter 5 we explore the living crystallisation driven self-assembly of PLA-b- PAA block copolymers in aqueous media towards the formation of cylindrical micelles of controlled length. Interestingly, in many of the unstained TEM images presented in this work the particles demonstrate a non-uniform contrast along their width. This unexpected result is fully investigated in Chapter 6.


Synthesis of Original Block Copolymers by Combination of RAFT Polymerization and Supramolecular Self-assembly

Synthesis of Original Block Copolymers by Combination of RAFT Polymerization and Supramolecular Self-assembly

Author: Senbin Chen

Publisher:

Published: 2012

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

This work dealt with the preparation and the study of supramolecular block copolymers based on hydrogen-bonding between homocomplementary or heterocomplementary stickers. The synthetic strategy was based on the combination of RAFT-mediated controlled radical polymerization and supramolecular chemistry. In the Chapter 2, we developed a strategy relying on the design of RAFT agents bearing thymine/diaminopyridine (DAP) recognition pairs and capable to grow well-defined miktoarm star supramolecular copolymers. To further extend the scope of H-bonding RAFT agents, in the Chapter 3, we also investigated the preparation of RAFT agents functionalized with motifs exhibiting very high binding constants. The Hamilton/barbiturate couple (log(K)≈4-5) was selected to generate more stable supramolecular block copolymers. Aiming at elaborating original associating macromolecules and at simplifying the strategy of synthesis, we finally explored the preparation ABC triblock supramolecular copolymers based on PA11 oligomers (OPA11) in Chapter 4. Ligation of a relevant dithiobenzoate group on the oligomers afforded oligomeric RAFT agents that allow for the preparation of ABC triblock supramolecular copolymers, where A is semi-crystalline, B in rubbery state and C in glassy state. Studies on the incorporation of such copolymers in epoxy networks are under progress.


Synthesis and Self-assembly of Advanced Bottlebrush Block Copolymers℗

Synthesis and Self-assembly of Advanced Bottlebrush Block Copolymers℗

Author: Justin Bolton

Publisher:

Published: 2012

Total Pages: 150

ISBN-13:

DOWNLOAD EBOOK

Using the grafting-from approach, three novel well-defined bottlebrush block copolymers were synthesized using various controlled polymerization techniques. Resulting macromolecules were characterized by GPC and 1H NMR and then self-assembled into nanostructured materials for further characterization. Asymmetric polystyrene-polylactide (PS-PLA) bottlebrush block copolymers have been shown to self-assemble into a cylindrical morphology with large domain spacings. PLA cylinders can be selectively etched out of the shear-aligned polymer monoliths to generate nanoporous materials with an average cylindrical pore diameter of 55 nm. The remaining bottlebrush backbone provides a functional, hydrophilic coating inside the nanopores. This methodology significantly expands the range of pore sizes attainable in block copolymer based nanoporous materials.^A polystyrene-poly(methyl methacrylate) (PS-PMMA) bottlebrush block copolymer with asymmetric branches was synthesized by grafting from a symmetrical backbone containing a novel dual vinyl initiation system and characterized by atomic force microscopy (AFM) and small-angle x-ray scattering (SAXS). The block copolymer backbone was prepared by sequential reversible addition-fragmentation chain transfer (RAFT) copolymerization of solketal methacrylate and 2-(bromoisobutyryl)ethyl methacrylate (BIEM). From the poly(BIEM) segment, PMMA branches were grafted by atom transfer radical polymerization (ATRP). Solketal groups were then subjected to hydrolysis and functionalized with a RAFT agent. Subsequently, from RAFT sites of the poly(SM) segment, polystyrene branches were grafted to yield the final bottlebrush block copolymer.^The resulting polymer was found to have a vertically oriented cylindrical morphology by AFM with an average cylinder diameter of 45 nm; morphology was also confirmed by SAXS analysis. A novel polylactide-poly(methyl methacrylate)-polystyrene (PLA-PMMA-PS) triblock bottlebrush block copolymer was synthesized from a triblock backbone employing ATRP, RAFT and ROP techniques. Novel 5-TMS-4-pentyn-1-ol methacrylate (TPYM) with protected alkyne functionality was developed and characterized as a homopolymer. Click chemistry was used to introduce RAFT groups along the homopolymer backbone. Subsequently, PS branches were grafted from RAFT initiators along the backbone. A well-defined poly(SM-b-BIEM-b-TPYM) backbone was synthesized followed by grafting of PMMA brushes from the BIEM segment by ATRP.^Post PMMA grafting, the ATRP end groups were removed and the TMS group was deprotected to allow functionalization of the alkyne with an azido terminated RAFT agent by way of Huisgen 1,3-dipolar cycloaddition. From the RAFT sites, PS was grafted followed by deprotection of the hydroxyl functionality of the SM block. Resulting liberated hydroxyls were used to initiate PLA grafts, yielding the final well-defined triblock bottlebrush block copolymer (PLA-PMMA-PS).


Two Dimensional Structures from Cobaltocenium-containing Block Copolymers by Crystallization-driven Self-assembly

Two Dimensional Structures from Cobaltocenium-containing Block Copolymers by Crystallization-driven Self-assembly

Author: Yujin Cha

Publisher:

Published: 2017

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Self-assembly of Block copolymer (BCP) provides a robust method to construct a variety of micellar morphologies, ranging from spheres to vesicles. Crystallization-Driven Self-assembly (CDSA), one of the methods for the preparation of nano-objects, has attracted a great deal of interest due to its unique ability for dimensional control over 1D, 2D, and 3D nano-objects. Metallopolymers have been utilized in CDSA. I will present CDSA of cobaltocenium-containing block copolymers, poly(caprolactone)-b-poly(cobaltocenium amidoethyl methacrylate) (PCL-b-PCoAEMA), which can form 2D hexagonal platelet structures in protic solvents. By changing the composition of block copolymers, the block copolymers self-assembled into various two-dimensional platelets, from hexagons to diamonds.


Block Copolymers with Crystallizable Blocks

Block Copolymers with Crystallizable Blocks

Author: Holger Schmalz

Publisher:

Published: 2022-03-14

Total Pages: 200

ISBN-13: 9783036533261

DOWNLOAD EBOOK

Block copolymers with crystallizable blocks have moved into the focus of current research, owing to their unique self-assembly behaviour and properties. New synthetic concepts give, for example, even access to tetrablock copolymers with four crystalline blocks, bio-based thermoplastic elastomers (e.g., based on ABA triblock copolymers with poly(L-lactide) (PLLA) hard segments), and allow new, exciting insights into the interplay of microphase separation and crystallization in controlling self-assembly in bulk (confined vs. break-out crystalliza-tion). Concerning self-assembly in solution, crystallization-driven self-assembly (CDSA) paved the way to a myriad of crystalline-core micellar structures and hierarchical super-structures that were not accessible before via self-assembly of fully amorphous block copolymers. This allows for the production of cylindrical micelles with defined lengths, length distribution, and corona chemistries (block type or patchy corona), as well as branched micelles and fascinating micellar superstructures (e.g., 2D lenticular platelets, scarf-shaped micelles, multidimensional micellar assemblies, and cross and "windmill"-like supermicelles). This Special Issue brings together new developments in the synthesis and self-assembly of block copolymers with crystallizable blocks and also addresses emerging applications for these exciting materials. It includes two reviews on CDSA and eight contributions spanning from membranes for gas separation to self-assembly in bulk and solution.


Amphiphilic Block Copolymers

Amphiphilic Block Copolymers

Author: P. Alexandridis

Publisher: Elsevier

Published: 2000-10-18

Total Pages: 449

ISBN-13: 0080527108

DOWNLOAD EBOOK

It is the belief of the editors of this book that the recognition of block copolymers as being amphiphilic molecules and sharing common features with other well-studied amphiphiles will prove beneficial to both the surfactant and the polymer communities. An aim of this book is to bridge the two communities and cross-fertilise the different fields. To this end, leading researchers in the field of amphiphilic block copolymer self-assembly, some having a background in surfactant chemistry, and others with polymer physics roots, have agreed to join forces and contribute to this book.The book consists of four entities. The first part discusses theoretical considerations behind the block copolymer self-assembly in solution and in the melt. The second part provides case studies of self-assembly in different classes of block copolymers (e.g., polyethers, polyelectrolytes) and in different environments (e.g., in water, in non-aqueous solvents, or in the absence of solvents). The third part presents experimental tools, ranging from static (e.g., small angle neutron scattering) to dynamic (e.g., rheology), which can prove valuable in the characterization of block copolymer self-assemblies. The fourth part offers a sampling of current applications of block copolymers in, e.g., formulations, pharmaceutics, and separations, applications which are based on the unique self-assembly properties of block copolymers.