Sea-level constitutes a critical planetary boundary for geological processes and human life. Sea-level fluctuations during major greenhouse phases are still enigmatic and strongly discussed in terms of changing climate systems. The geological record of the Cretaceous greenhouse period provides a deep-time view on greenhouse-phase Earthsystem processes that facilitates a much better understanding of the causes and consequences of global, geologically short-term, sea-level changes. In particualr, Cretaceous hothouse periods can serve as a laboratory to better understand a near-future greenhouse Earth. This volume presents high-resolution sea-level records from globally distributed sedimentary archives of the Cretaceous involving a large group of scientists from the International Geoscience Programme IGCP 609. Marine to non-marine sedimentary successions were analysed for revised age constraints, the correlation of global palaeoclimate shifts and sea-level changes, tested for climate-driven cyclicities, and correlated within a high-resolution stratigraphic framework of the Geological Timescale. For hothouse periods, the hypothesis of significant global groundwater-related sea-level change, i.e. aquifer-eustasy as a major process, is reviewed and substantiated.
For most people, planet Earth's icy parts remain out of sight and out of mind. Yet it is the melting of ice that will both raise sea level and warm the climate further by reducing the white surfaces that reflect solar energy back into space. In effect, our icy places act as the world's refrigerator, helping to keep our climate relatively cool. The Icy Planet lays out carbon dioxide's role as the control knob of our climate over the past 1000 million years, then explores what is happening to ice and snow in Antarctica, the Arctic and the high mountains. Colin P. Summerhayes takes readers to the world's icy places to see what is happening to its ice, snow, and permafrost. He recounts tales from his own visits to these frozen landscapes, shining a light on some of the wonders he has encountered in his travels. He also brings together pieces of the climate story from different scientific disciplines, and from the past and the present, to illustrate how Earth's climate system works. Utilizing geological records of climate change alongside new technologies in ice coring, Summerhayes crafts a detailed and compelling record of Earth's climate history and examines how that can be used as a window into our future.
There is little dispute within the scientific community that humans are changing Earth's climate on a decadal to century time-scale. By the end of this century, without a reduction in emissions, atmospheric CO2 is projected to increase to levels that Earth has not experienced for more than 30 million years. As greenhouse gas emissions propel Earth toward a warmer climate state, an improved understanding of climate dynamics in warm environments is needed to inform public policy decisions. In Understanding Earth's Deep Past, the National Research Council reports that rocks and sediments that are millions of years old hold clues to how the Earth's future climate would respond in an environment with high levels of atmospheric greenhouse gases. Understanding Earth's Deep Past provides an assessment of both the demonstrated and underdeveloped potential of the deep-time geologic record to inform us about the dynamics of the global climate system. The report describes past climate changes, and discusses potential impacts of high levels of atmospheric greenhouse gases on regional climates, water resources, marine and terrestrial ecosystems, and the cycling of life-sustaining elements. While revealing gaps in scientific knowledge of past climate states, the report highlights a range of high priority research issues with potential for major advances in the scientific understanding of climate processes. This proposed integrated, deep-time climate research program would study how climate responded over Earth's different climate states, examine how climate responds to increased atmospheric carbon dioxide and other greenhouse gases, and clarify the processes that lead to anomalously warm polar and tropical regions and the impact on marine and terrestrial life. In addition to outlining a research agenda, Understanding Earth's Deep Past proposes an implementation strategy that will be an invaluable resource to decision-makers in the field, as well as the research community, advocacy organizations, government agencies, and college professors and students.
Stratigraphy & Timescales, Volume Six in the Advances in Sequence Stratigraphy series covers research in stratigraphic disciplines, including the most recent developments in the geosciences. This fully commissioned review publication aims to foster and convey progress in stratigraphy with its inclusion of a variety of topics, including Carbon isotope stratigraphy - principles and applications, Interpreting Phanerozoic d13C patterns as periodic glacio-eustatic sequences, Stable carbon isotopes in archaeological plant remains, Review of the Upper Ediacaran-Lower Cambrian Detrital Series in Central and North Iberia: NE Africa as possible Source Area, Calibrating d13C and d18O chemostratigraphic correlations across Cambrian strata of SW, and much more. - Contains contributions from leading authorities in the field - Informs and updates on all the latest developments in the field - Aims to foster and convey progress in stratigraphy, including geochronology, magnetostratigraphy, lithostratigraphy, event-stratigraphy, and more
"This volume covers new developments and research on mass extinctions, volcanism, and impacts. It addresses the following topics: the Central Iapetus magmatic province; thermogenic degassing in large igneous provinces; global mercury enrichment in Valanginian sediments; Guerrero-Morelos carbonate platform response to the Caribbean-Colombian Cretaceous large igneous province; implications for the Cretaceous-Paleocene boundary event in shallow platform environments and correlation to the deep sea; environmental effects of Deccan volcanism on biotic transformations and attendant Cretaceous/Paleogene boundary mass extinction in the Indian subcontinent; Deccan red boles; and factors leading to the collapse of producers during the Chicxulub impact and Deccan Traps eruptions"--
One of Springer’s Major Reference Works, this book gives the reader a truly global perspective. It is the first major reference work in its field. Paleoclimate topics covered in the encyclopedia give the reader the capability to place the observations of recent global warming in the context of longer-term natural climate fluctuations. Significant elements of the encyclopedia include recent developments in paleoclimate modeling, paleo-ocean circulation, as well as the influence of geological processes and biological feedbacks on global climate change. The encyclopedia gives the reader an entry point into the literature on these and many other groundbreaking topics.
The changing focus and approach of geomorphic research suggests that the time is opportune for a summary of the state of discipline. The number of peer-reviewed papers published in geomorphic journals has grown steadily for more than two decades and, more importantly, the diversity of authors with respect to geographic location and disciplinary background (geography, geology, ecology, civil engineering, computer science, geographic information science, and others) has expanded dramatically. As more good minds are drawn to geomorphology, and the breadth of the peer-reviewed literature grows, an effective summary of contemporary geomorphic knowledge becomes increasingly difficult. The fourteen volumes of this Treatise on Geomorphology will provide an important reference for users from undergraduate students looking for term paper topics, to graduate students starting a literature review for their thesis work, and professionals seeking a concise summary of a particular topic. Information on the historical development of diverse topics within geomorphology provides context for ongoing research; discussion of research strategies, equipment, and field methods, laboratory experiments, and numerical simulations reflect the multiple approaches to understanding Earth’s surfaces; and summaries of outstanding research questions highlight future challenges and suggest productive new avenues for research. Our future ability to adapt to geomorphic changes in the critical zone very much hinges upon how well landform scientists comprehend the dynamics of Earth’s diverse surfaces. This Treatise on Geomorphology provides a useful synthesis of the state of the discipline, as well as highlighting productive research directions, that Educators and students/researchers will find useful. Geomorphology has advanced greatly in the last 10 years to become a very interdisciplinary field. Undergraduate students looking for term paper topics, to graduate students starting a literature review for their thesis work, and professionals seeking a concise summary of a particular topic will find the answers they need in this broad reference work which has been designed and written to accommodate their diverse backgrounds and levels of understanding Editor-in-Chief, Prof. J. F. Shroder of the University of Nebraska at Omaha, is past president of the QG&G section of the Geological Society of America and present Trustee of the GSA Foundation, while being well respected in the geomorphology research community and having won numerous awards in the field. A host of noted international geomorphologists have contributed state-of-the-art chapters to the work. Readers can be guaranteed that every chapter in this extensive work has been critically reviewed for consistency and accuracy by the World expert Volume Editors and by the Editor-in-Chief himself No other reference work exists in the area of Geomorphology that offers the breadth and depth of information contained in this 14-volume masterpiece. From the foundations and history of geomorphology through to geomorphological innovations and computer modelling, and the past and future states of landform science, no "stone" has been left unturned!
The Earth's climate is already warming due to increased concentrations of human-produced greenhouse gases in the atmosphere, and the specter of rising sea level is one of global warming's most far-reaching threats. Sea level will keep rising long after greenhouse gas emissions have ceased, because of the delay in penetration of surface warming to the ocean depths and because of the slow dissipation of excess atmospheric carbon dioxide. Adopting a long perspective that interprets sea level changes both underway and expected in the near future, Vivien Gornitz completes a highly relevant and necessary study of an unprecedented age in Earth's history. Gornitz consults past climate archives to help better anticipate future developments and prepare for them more effectively. She focuses on several understudied historical events, including the Paleocene-Eocene Thermal Anomaly, the Messinian salinity crisis, the rapid filling of the Black Sea (which may have inspired the story of Noah's flood), and the Storrega submarine slide, an incident possibly connected to a sea level occurrence roughly 8,000 years old. By examining dramatic variations in past sea level and climate, Gornitz concretizes the potential consequences of rapid, human-induced warming. She builds historical precedent for coastal hazards associated with a higher ocean level, such as increased damage from storm surge flooding, even if storm characteristics remain unchanged. Citing the examples of Rotterdam, London, New York City, and other forward-looking urban centers that are effectively preparing for higher sea level, Gornitz also delineates the difficult economic and political choices of curbing carbon emissions while underscoring, through past geological analysis, the urgent need to do so.