Vehicle crashes can lead to crushing of the battery, damaging lithium ion battery cells and causing local shorts, heat generation, and thermal runaway. Simulating all the physics and geometries at the same time is challenging and takes a lot of effort; thus, simplifications are needed. We developed a material model for simultaneously modeling the mechanical-electrochemical-thermal behavior, which predicted the electrical short, voltage drop, and thermal runaway behaviors followed by a mechanical abuse-induced short. The effect of short resistance on the battery cell performance was studied.
Advances in Battery Technologies for Electric Vehicles provides an in-depth look into the research being conducted on the development of more efficient batteries capable of long distance travel. The text contains an introductory section on the market for battery and hybrid electric vehicles, then thoroughly presents the latest on lithium-ion battery technology. Readers will find sections on battery pack design and management, a discussion of the infrastructure required for the creation of a battery powered transport network, and coverage of the issues involved with end-of-life management for these types of batteries. - Provides an in-depth look into new research on the development of more efficient, long distance travel batteries - Contains an introductory section on the market for battery and hybrid electric vehicles - Discusses battery pack design and management and the issues involved with end-of-life management for these types of batteries
Safety of Lithium Batteries describes how best to assure safety during all phases of the life of Lithium ion batteries (production, transport, use, and disposal). About 5 billion Li-ion cells are produced each year, predominantly for use in consumer electronics. This book describes how the high-energy density and outstanding performance of Li-ion batteries will result in a large increase in the production of Li-ion cells for electric drive train vehicle (xEV) and battery energy storage (BES or EES) purposes. The high-energy density of Li battery systems comes with special hazards related to the materials employed in these systems. The manufacturers of cells and batteries have strongly reduced the hazard probability by a number of measures. However, absolute safety of the Li system is not given as multiple incidents in consumer electronics have shown. - Presents the relationship between chemical and structure material properties and cell safety - Relates cell and battery design to safety as well as system operation parameters to safety - Outlines the influences of abuses on safety and the relationship to battery testing - Explores the limitations for transport and storage of cells and batteries - Includes recycling, disposal and second use of lithium ion batteries
Providing a modern and comprehensive coverage of continuum mechanics, this volume includes information on "variational principles"--Significant, as this is the only method by which such material is actually utilized in engineering practice.
The Handbook of Lithium-Ion Battery Pack Design: Chemistry, Components, Types and Terminology,?Second Edition provides a clear and concise explanation of EV and Li-ion batteries for readers that are new to the field. The second edition expands and updates all topics covered in the original book, adding more details to all existing chapters and including major updates to align with all of the rapid changes the industry has experienced over the past few years. This handbook offers a layman's explanation of the history of vehicle electrification and battery technology, describing the various terminology and acronyms and explaining how to do simple calculations that can be used in determining basic battery sizing, capacity, voltage, and energy. By the end of this book the reader will have a solid understanding of the terminology around Li-ion batteries and be able to undertake simple battery calculations. The book is immensely useful to beginning and experienced engineers alike who are moving into the battery field. Li-ion batteries are one of the most unique systems in automobiles today in that they combine multiple engineering disciplines, yet most engineering programs focus on only a single engineering field. This book provides the reader with a reference to the history, terminology and design criteria needed to understand the Li-ion battery and to successfully lay out a new battery concept. Whether you are an electrical engineer, a mechanical engineer or a chemist, this book will help you better appreciate the inter-relationships between the various battery engineering fields that are required to understand the battery as an Energy Storage System. It gives great insights for readers ranging from engineers to sales, marketing, management, leadership, investors, and government officials. - Adds a brief history of battery technology and its evolution to current technologies? - Expands and updates the chemistry to include the latest types - Discusses thermal runaway and cascading failure mitigation technologies? - Expands and updates the descriptions of the battery module and pack components and systems?? - Adds description of the manufacturing processes for cells, modules, and packs? - Introduces and discusses new topics such as battery-as-a-service, cell to pack and cell to chassis designs, and wireless BMS?
"This is the first machine-generated scientific book in chemistry published by Springer Nature. Serving as an innovative prototype defining the current status of the technology, it also provides an overview about the latest trends of lithium-ion batteries research. This book explores future ways of informing researchers and professionals. State-of-the-art computer algorithms were applied to: select relevant sources from Springer Nature publications, arrange these in a topical order, and provide succinct summaries of these articles. The result is a cross-corpora auto-summarization of current texts, organized by means of a similarity-based clustering routine in coherent chapters and sections. This book summarizes more than 150 research articles published from 2016 to 2018 and provides an informative and concise overview of recent research into anode and cathode materials as well as further aspects such as separators, polymer electrolytes, thermal behavior and modelling. With this prototype, Springer Nature has begun an innovative journey to explore the field of machine-generated content and to find answers to the manifold questions on this fascinating topic. Therefore it was intentionally decided not to manually polish or copy-edit any of the texts so as to highlight the current status and remaining boundaries of machine-generated content. Our goal is to initiate a broad discussion, together with the research community and domain experts, about the future opportunities, challenges and limitations of this technology."--Publisher's website.
Designed for students without in-depth mathematical training, this text includes a comprehensive presentation and analysis of algorithms of time-dependent phenomena plus beam, plate, and shell theories. Solution guide available upon request.
Gaining public attention due, in part, to their potential application as energy storage devices in cars, Lithium-ion batteries have encountered widespread demand, however, the understanding of lithium-ion technology has often lagged behind production. This book defines the most commonly encountered challenges from the perspective of a high-end lithium-ion manufacturer with two decades of experience with lithium-ion batteries and over six decades of experience with batteries of other chemistries. Authors with years of experience in the applied science and engineering of lithium-ion batteries gather to share their view on where lithium-ion technology stands now, what are the main challenges, and their possible solutions. The book contains real-life examples of how a subtle change in cell components can have a considerable effect on cell’s performance. Examples are supported with approachable basic science commentaries. Providing a unique combination of practical know-how with an in-depth perspective, this book will appeal to graduate students, young faculty members, or others interested in the current research and development trends in lithium-ion technology.
Crompton's Battery Reference Book has become the standard reference source for a wide range of professionals and students involved in designing, manufacturing, and specifying products and systems that use batteries. This book is unique in providing extensive data on specific battery types, manufacturers and suppliers, as well as covering the theory - an aspect of the book which makes an updated edition important for every professional's library. The coverage of different types of battery is fully comprehensive, ranging from minute button cells to large installations weighing several hundred tonnes. - Must-have information and data on all classes of battery in an accessible form - Essential reference for design engineers in automotive and aerospace applications, telecommunications equipment, household appliances, etc. - Informs you of developments over the past five years
Battery Operated Devices and Systems provides a comprehensive review of the essentials of batteries and battery applications as well as state-of-the-art technological developments. The book covers the most recent trends, especially for the ubiquitous lithium ion batteries. It lays particular emphasis on the power consumption of battery operated devices and systems and the implications for battery life and runtime. Battery management is also dealt with in detail, particularly as far as the charging methods are concerned, along with the criteria of battery choice. This book describes a variety of portable and industrial applications and the basic characteristics of all primary and secondary batteries used in these applications. Portable applications include mobile phones, notebook computers, cameras, camcorders, personal digital assistants, medical instruments, power tools, and portable GPS. Industrial applications range from aerospace and telecommunications to emergency systems, load levelling, energy storage, toll collection, different meters, data loggers, oil drilling, oceanography, and meteorology. The book also discusses wireless connectivity, i.e. Wi-Fi, Bluetooth and Zigbee, and concludes with some market considerations. Links to further reading are provided through the 275 references. This book will be a valuable information source for researchers interested in devices and systems drawing power from batteries. It will also appeal to graduates working in research institutions; universities and industries dealing with power sources and energy conversion; civil, electrical and transport engineers; and chemists. A comprehensive review of battery applications Includes 209 figures and 62 tables Describes state-of-the-art technological developments