This sixth volume in the book series Progress in HPLC-HPCE examines the enhancement of high- performance liquid chromatography through the development of an advanced mode of electrochemical detection (ECD) --- the coulometric array detection --- from its initial, yet problematic, amperometric (thin-layer) design to the highly sensitive, selective and stable coulometric (flow-through) design. Unlike amperometric electrodes, the coulometric electrode is 100% efficient and measures signals from all of the analyte passing through it, which leads to improved sensitivity as well as unique selectivity. The coulometric electrode array offers the resolution of the photodiode array with the extreme sensitivity of an electrochemical detector.
Electrochemical Detection in HPLC: Analysis of Drugs and Poisons is the first monograph devoted to the application of this mode of analysis to the assay of exogenous compounds such as drugs in biological fluids and associated areas. The introductory chapters provide information on basic electrochemistry and HPLC-ED, and on trouble-shooting. The specialized area of thiol analysis is also discussed in detail. Salient practical details of published applications of the technique in analytical toxicology and related areas are provided in a standard format. Alternative techniques are suggested throughout. The emphasis is on the analysis of exogenous compounds, although catecholamines and other endogenous species are discussed in so far as they may be used as drugs. The practical nature of this book will make it useful to professionals working in the field. It will also be of benefit to analysts wishing to use HPLC-ED in the analysis of biological samples for analytes not specifically covered in the volume.
This sixth volume in the book series Progress in HPLC-HPCE examines the enhancement of high- performance liquid chromatography through the development of an advanced mode of electrochemical detection (ECD) --- the coulometric array detection --- from its initial, yet problematic, amperometric (thin-layer) design to the highly sensitive, selective and stable coulometric (flow-through) design. Unlike amperometric electrodes, the coulometric electrode is 100% efficient and measures signals from all of the analyte passing through it, which leads to improved sensitivity as well as unique selectivity. The coulometric electrode array offers the resolution of the photodiode array with the extreme sensitivity of an electrochemical detector.
Agricultural and Food Electroanalysis offers a comprehensive rationale of electroanalysis, revealing its enormous potential in agricultural food analysis. A unique approach is used which fills a gap in the literature by bringing in applications to everyday problems. This timely text presents in-depth descriptions about different electrochemical techniques following their basic principles, instrumentation and main applications. Such techniques offer invaluable features such as inherent miniaturization, high sensitivity and selectivity, low cost, independence of sample turbidity, high compatibility with modern technologies such as microchips and biosensors, and the use of exciting nanomaterials such as nanoparticles, nanotubes and nanowires. Due to the advantages that modern electroanalytical techniques bring to food analysis, and the huge importance and emphasis given today to food quality and safety, this comprehensive work will be an essential read for professionals and researchers working in analytical laboratories and development departments, and a valuable guide for students studying for careers in food science, technology and chemistry.
Metabolome analysis is now recognized as a crucial component of functional genomic and systems biology investigations. Innovative approaches to the study of metabolic regulation in microbial, plant and animal systems are increasingly facilitating the emergence of systems approaches in biology. This book highlights analytical and bioinformatics strategies now available for investigating metabolic networks in microbial, plant and animal systems. The contributing authors are world leaders in this field and they present an unambiguous case for pursuing metabolome analysis as a means to attain a systems level understanding of complex biological systems.
The first protocols book, Free Radical and Antioxidant Protocols (1) was published in late 1998. Sections were divided into three parts, covering selected biochemical techniques for measuring oxidative stress, antioxidant (AOX) activity, and combined applications. In choosing the 40 methods to be included in that book, I realized there were considerably more of equal value than that which we could have presented in a single volume. To produce a comprehensive resource, this book and a third are being compiled to expand coverage of the field. A summary of papers (2) published on this important subject emphasizes the continuing rapid growth in oxidative stress investigations relating to our understanding of biochemical reactions, their relevance to pathophysiological mechanisms, how disease may arise, and how therapeutic intervention may be achieved(3). Although there is some overlap between the categories, the ana- sis shown below illustrates where current studies are concentrated and are almost evenly distributed between free radicals and AOX. Over the last 4 yr, there has been a 55% increase in the number of papers published in the area.
Food Analysis by HPLC, Second Edition presents an exhaustive compilation of analytical methods that belong in the toolbox of every practicing food chemist. Topics covered include biosensors, BMO’s, nanoscale analysis systems, food authenticity, radionuclides concentration, meat factors and meat quality, particle size analysis, and scanning colorimity. It also analyzes peptides, carbohydrates, vitamins, and food additives and contains chapters on alcohols, phenolic compounds, pigments, and residues of growth promoters. Attuned to contemporary food industry concerns, this bestselling classic also features topical coverage of the quantification of genetically modified organisms in food.
Oxidative damage appears to play a central role in the development of a wide range of tissue pathology, including neurodegenerative disease, drug side-effects, xenobiotic toxicity, carcinogenesis, and the aging process, to name just a few. Because of the centrality of oxidative processes to normal and abnormal tissue function, it has become imperative to develop appropriate analytical techniques to facilitate the quantitation of significant reactants. Without advances in methodology, corresponding advances in our knowledge of underlying biochemical events will be necessarily limited. Drs. Hensley and Floyd have done an outstanding job of assembling the work of world-class experts into Methods in Biological Oxidative Stress. The contributors have presented concise, yet thorough, descriptions of the state-of-the-art methods that any investigator working in the field needs to access. Mannfred A. Hollinger v Preface Free radicals and reactive oxidizing agents were once ignored as biochemical entities not worth close scrutiny, but are now recognized as causes or contributing factors in dozens, if not hundreds, of disease states. In addition, free radical metabolisms of xenobiotics have become increasingly important to pharmacologists. Accordingly, the need has arisen to accurately quantify reactive oxygen species and their byproducts. Methods in Biological Oxidative Stress is practical in scope, providing the details of up-to-date techniques for measuring oxidative stress and detecting oxidizing agents both in vitro and in vivo. The contributors are recognized experts in the field of oxidative stress who have developed novel strategies for studying biological oxidations.
Widely employed for separating and detecting chemicals in solution, separation techniques are most often applied in tandem, subsequently referred to as hyphenated methods. Hyphenated and Alternative Methods of Detection in Chromatography details the development and application of mass spectral detection techniques coupled with gas phase and liquid