Cosmology describes the evolution of the Universe and is based on a description of its beginning from quantum fluctuations. String theory is the only known consistent theory of quantum gravity that can deal with the highest energy scales near the Planck energy, relevant for cosmology's beginning. As a result, only string theory can give a fully consistent picture of cosmological origins. This book describes the best current avenues for obtaining cosmology from string theory. It is aimed at graduate students, and also researchers, with some familiarity with cosmology and string theory, however no detailed knowledge is required.
The essential beginner's guide to string theory The Little Book of String Theory offers a short, accessible, and entertaining introduction to one of the most talked-about areas of physics today. String theory has been called the "theory of everything." It seeks to describe all the fundamental forces of nature. It encompasses gravity and quantum mechanics in one unifying theory. But it is unproven and fraught with controversy. After reading this book, you'll be able to draw your own conclusions about string theory. Steve Gubser begins by explaining Einstein's famous equation E = mc2, quantum mechanics, and black holes. He then gives readers a crash course in string theory and the core ideas behind it. In plain English and with a minimum of mathematics, Gubser covers strings, branes, string dualities, extra dimensions, curved spacetime, quantum fluctuations, symmetry, and supersymmetry. He describes efforts to link string theory to experimental physics and uses analogies that nonscientists can understand. How does Chopin's Fantasie-Impromptu relate to quantum mechanics? What would it be like to fall into a black hole? Why is dancing a waltz similar to contemplating a string duality? Find out in the pages of this book. The Little Book of String Theory is the essential, most up-to-date beginner's guide to this elegant, multidimensional field of physics.
Cosmology in Gauge Field Theory and String Theory focuses on the cosmological implications of the gauge theories of particle physics and of string theory. The book first examines the universe's series of phase transitions in which the successive gauge symmetries of the higher-temperature phase were spontaneously broken after the big bang, discussing relics of these phase transitions, more generic relics (baryons, neutrinos, axions), and supersymmetric particles (neutralinos and gravitinos). The author next studies supersymmetric theory, supergravity theory, and the constraints on the underlying field theory of the universe's inflationary era. The book concludes with a discussion of black hole solutions of the supergravity theory that approximates string theory at low energies and the insight that string theory affords into the microscopic origin of the Bekenstein-Hawking entropy. Cosmology in Gauge Field Theory and String Theory provides a modern introduction to these important problems from a particle physicist's perspective. It is intended as an introductory textbook for a first course on the subject at a graduate level.
The past two decades have seen transformative advances in cosmology and string theory. Observations of the cosmic microwave background have revealed strong evidence for inflationary expansion in the very early universe, while new insights about compactifications of string theory have led to a deeper understanding of inflation in a framework that unifies quantum mechanics and general relativity. Written by two of the leading researchers in the field, this complete and accessible volume provides a modern treatment of inflationary cosmology and its connections to string theory and elementary particle theory. After an up-to-date experimental summary, the authors present the foundations of effective field theory, string theory, and string compactifications, setting the stage for a detailed examination of models of inflation in string theory. Three appendices contain background material in geometry and cosmological perturbation theory, making this a self-contained resource for graduate students and researchers in string theory, cosmology, and related fields.
The standard cosmological picture of our Universe emerging from a 'big bang' leaves open many fundamental questions which string theory, a unified theory of all forces of nature, should be able to answer. This 2007 text was the first dedicated to string cosmology, and contains a pedagogical introduction to the basic notions of the subject. It describes the possible scenarios suggested by string theory for the primordial evolution of our Universe. It discusses the main phenomenological consequences of these scenarios, stresses their differences from each other, and compares them to the more conventional models of inflation. The book summarises over 15 years of research in this field and introduces advances. It is self-contained, so it can be read by astrophysicists with no knowledge of string theory, and high-energy physicists with little understanding of cosmology. Detailed and explicit derivations of all the results presented provide a deeper appreciation of the subject.
Physics World's 'Book of the Year' for 2016 An Entertaining and Enlightening Guide to the Who, What, and Why of String Theory, now also available in an updated reflowable electronic format compatible with mobile devices and e-readers. During the last 50 years, numerous physicists have tried to unravel the secrets of string theory. Yet why do these scientists work on a theory lacking experimental confirmation? Why String Theory? provides the answer, offering a highly readable and accessible panorama of the who, what, and why of this large aspect of modern theoretical physics. The author, a theoretical physics professor at the University of Oxford and a leading string theorist, explains what string theory is and where it originated. He describes how string theory fits into physics and why so many physicists and mathematicians find it appealing when working on topics from M-theory to monsters and from cosmology to superconductors.
The purpose of this book is to thoroughly prepare the reader for research in string theory at an intermediate level. As such it is not a compendium of results but intended as textbook in the sense that most of the material is organized in a pedagogical and self-contained fashion. Beyond the basics, a number of more advanced topics are introduced, such as conformal field theory, superstrings and string dualities - the text does not cover applications to black hole physics and cosmology, nor strings theory at finite temperatures. End-of-chapter references have been added to guide the reader wishing to pursue further studies or to start research in well-defined topics covered by this book.
This book attempts to explain why 'string theory' may provide the comprehensive underlying theory that describes and explains our world. It is an enthusiastic view of how compactified string/M-theories (plus data that may be reachable) seem to have the possibilities of leading to a comprehensive underlying theory of particle physics and cosmology, perhaps soon. We are living in a hugely exciting era for science, one during which it may be possible to achieve a real and true understanding of our physical world.
Nobel Prize–winning physicist Roger Penrose questions some of the most fashionable ideas in physics today, including string theory What can fashionable ideas, blind faith, or pure fantasy possibly have to do with the scientific quest to understand the universe? Surely, theoretical physicists are immune to mere trends, dogmatic beliefs, or flights of fancy? In fact, acclaimed physicist and bestselling author Roger Penrose argues that researchers working at the extreme frontiers of physics are just as susceptible to these forces as anyone else. In this provocative book, he argues that fashion, faith, and fantasy, while sometimes productive and even essential in physics, may be leading today's researchers astray in three of the field's most important areas—string theory, quantum mechanics, and cosmology. Arguing that string theory has veered away from physical reality by positing six extra hidden dimensions, Penrose cautions that the fashionable nature of a theory can cloud our judgment of its plausibility. In the case of quantum mechanics, its stunning success in explaining the atomic universe has led to an uncritical faith that it must also apply to reasonably massive objects, and Penrose responds by suggesting possible changes in quantum theory. Turning to cosmology, he argues that most of the current fantastical ideas about the origins of the universe cannot be true, but that an even wilder reality may lie behind them. Finally, Penrose describes how fashion, faith, and fantasy have ironically also shaped his own work, from twistor theory, a possible alternative to string theory that is beginning to acquire a fashionable status, to "conformal cyclic cosmology," an idea so fantastic that it could be called "conformal crazy cosmology." The result is an important critique of some of the most significant developments in physics today from one of its most eminent figures.