The advancement of methods and technologies in the oil and gas industries calls for new insight into the corrosion problems these industries face daily. With the application of more precise instruments and laboratory techniques as well as the development of new scientific paradigms, corrosion professionals are also witnessing a new era in the way d
The petroleum and chemical industries contain a wide variety of corrosive environments, many of which are unique to these industries. Oil and gas production operations consume a tremendous amount of iron and steel pipe, tubing, pumps, valves, and sucker rods. Metallic corrosion is costly. However, the cost of corrosion is not just financial. Beyond the huge direct outlay of funds to repair or replace corroded structures are the indirect costs – natural resources, potential hazards, and lost opportunity. Wasting natural resources is a direct contradiction to the growing need for sustainable development. By selecting the correct material and applying proper corrosion protection methods, these costs can be reduced, or even eliminated. This book provides a minimum design requirement for consideration when designing systems in order to prevent or control corrosion damage safely and economically, and addresses: • Corrosion problems in petroleum and chemical industries • Requirements for corrosion control • Chemical control of corrosive environments • Corrosion inhibitors in refineries and petrochemical plants • Materials selection and service life of materials • Surface preparation, protection and maintainability • Corrosion monitoring - plant inspection techniques and laboratory corrosion testing techniques Intended for engineers and industry personnel working in the petroleum and chemical industries, this book is also a valuable resource for research and development teams, safety engineers, corrosion specialists and researchers in chemical engineering, engineering and materials science.
Provides comprehensive coverage of corrosion inhibitors in the oil and gas industries Considering the high importance of corrosion inhibitor development for the oil and gas sectors, this book provides a thorough overview of the most recent advancements in this field. It systematically addresses corrosion inhibitors for various applications in the oil and gas value chain, as well as the fundamentals of corrosion inhibition and interference of inhibitors with co-additives. Corrosion Inhibitors in the Oil and Gas Industries is presented in three parts. The first part on Fundamentals and Approaches focuses on principles and processes in the oil and gas industry, the types of corrosion encountered and their control methods, environmental factors affecting inhibition, material selection strategies, and economic aspects of corrosion. The second part on Choice of Inhibitors examines corrosion inhibitors for acidizing processes, inhibitors for sweet and sour corrosion, inhibitors in refinery operations, high-temperature corrosion inhibitors, inhibitors for challenging corrosive environments, inhibitors for microbiologically influenced corrosion, polymeric inhibitors, vapor phase inhibitors, and smart controlled release inhibitor systems. The last part on Interaction with Co-additives looks at industrial co-additives and their interference with corrosion inhibitors such as antiscalants, hydrate inhibitors, and sulfide scavengers. -Presents a well-structured and systematic overview of the fundamentals and factors affecting corrosion -Acts as a handy reference tool for scientists and engineers working with corrosion inhibitors for the oil and gas industries -Collectively presents all the information available on the development and application of corrosion inhibitors for the oil and gas industries -Offers a unique and specific focus on the oil and gas industries Corrosion Inhibitors in the Oil and Gas Industries is an excellent resource for scientists in industry as well as in academia working in the field of corrosion protection for the oil and gas sectors, and will appeal to materials scientists, electrochemists, chemists, and chemical engineers.
The effect of corrosion in the oil industry leads to the failure of parts. This failure results in shutting down the plant to clean the facility. The annual cost of corrosion to the oil and gas industry in the United States alone is estimated at $27 billion (According to NACE International)-leading some to estimate the global annual cost to the oil and gas industry as exceeding $60 billion. In addition, corrosion commonly causes serious environmental problems, such as spills and releases. An essential resource for all those who are involved in the corrosion management of oil and gas infrastructure, Corrosion Control in the Oil and Gas Industry provides engineers and designers with the tools and methods to design and implement comprehensive corrosion-management programs for oil and gas infrastructures. The book addresses all segments of the industry, including production, transmission, storage, refining and distribution. Selects cost-effective methods to control corrosion Quantitatively measures and estimates corrosion rates Treats oil and gas infrastructures as systems in order to avoid the impacts that changes to one segment if a corrosion management program may have on others Provides a gateway to more than 1,000 industry best practices and international standards
Corrosion Protection for the Oil and Gas Industry: Pipelines, Subsea Equipment, and Structures summarizes the main causes of corrosion and requirements for materials protection, selection of corrosion-resistant materials and coating materials commonly used for corrosion protection, and the limitations to their use, application, and repair. This book focuses on the protection of steels against corrosion in an aqueous environment, either immersed in seawater or buried. It also includes guidelines for the design of cathodic protection systems and reviews of cathodic protection methods, materials, installation, and monitoring. It is concerned primarily with the external and internal corrosion protection of onshore pipelines and subsea pipelines, but reference is also made to the protection of other equipment, subsea structures, risers, and shore approaches. Two case studies, design examples, and the author’s own experiences as a pipeline integrity engineer are featured in this book. Readers will develop a high quality and in-depth understanding of the corrosion protection methods available and apply them to solve corrosion engineering problems. This book is aimed at students, practicing engineers, and scientists as an introduction to corrosion protection for the oil and gas industry, as well as to overcoming corrosion issues.
Originally published in 1994, this second edition of Corrosion in the Petrochemical Industry collects peer-reviewed articles written by experts in the field of corrosion that were specifically chosen for this book because of their relevance to the petrochemical industry. This edition expands coverage of the different forms of corrosion, including the effects of metallurgical variables on the corrosion of several alloys. It discusses protection methods, including discussion of corrosion inhibitors and corrosion resistance of aluminum, magnesium, stainless steels, and nickels. It also includes a section devoted specifically to petroleum and petrochemical industry related issues.
Microorganisms are ubiquitously present in petroleum reservoirs and the facilities that produce them. Pipelines, vessels, and other equipment used in upstream oil and gas operations provide a vast and predominantly anoxic environment for microorganisms to thrive. The biggest technical challenge resulting from microbial activity in these engineered environments is the impact on materials integrity. Oilfield microorganisms can affect materials integrity profoundly through a multitude of elusive (bio)chemical mechanisms, collectively referred to as microbiologically influenced corrosion (MIC). MIC is estimated to account for 20 to 30% of all corrosion-related costs in the oil and gas industry. This book is intended as a comprehensive reference for integrity engineers, production chemists, oilfield microbiologists, and scientists working in the field of petroleum microbiology or corrosion. Exhaustively researched by leaders from both industry and academia, this book discusses the latest technological and scientific advances as well as relevant case studies to convey to readers an understanding of MIC and its effective management.
This greatly updated and expanded third edition of Corrosion Control in Petroleum Production is written for non-experts who have the responsibility for corrosion management of subsurface, surface, and subsea equipment used for producing and processing oil and natural gas. It provides an overview and reference on the different corrosion threats, the methods for controlling corrosion, and the establishment of a management system based on risk and continuous improvement. The authors, Robert Franco and Tim Bieri, have distilled 80 years of personal experience--as well as the experience from multiple reviewers and contributors--into one comprehensive reference. Included are hundreds of photographs, figures, and tables to illustrate the practical aspects and essential theory of corrosion control and materials selection.
“Process Plant Equipment Book is another great publication from Wiley as a reference book for final year students as well as those who will work or are working in chemical production plants and refinery...” -Associate Prof. Dr. Ramli Mat, Deputy Dean (Academic), Faculty of Chemical Engineering, Universiti Teknologi Malaysia “...give[s] readers access to both fundamental information on process plant equipment and to practical ideas, best practices and experiences of highly successful engineers from around the world... The book is illustrated throughout with numerous black & white photos and diagrams and also contains case studies demonstrating how actual process plants have implemented the tools and techniques discussed in the book. An extensive list of references enables readers to explore each individual topic in greater depth...” –Stainless Steel World and Valve World, November 2012 Discover how to optimize process plant equipment, from selection to operation to troubleshooting From energy to pharmaceuticals to food, the world depends on processing plants to manufacture the products that enable people to survive and flourish. With this book as their guide, readers have the information and practical guidelines needed to select, operate, maintain, control, and troubleshoot process plant equipment so that it is efficient, cost-effective, and reliable throughout its lifetime. Following the authors' careful explanations and instructions, readers will find that they are better able to reduce downtime and unscheduled shutdowns, streamline operations, and maximize the service life of processing equipment. Process Plant Equipment: Operation, Control, and Reliability is divided into three sections: Section One: Process Equipment Operations covers such key equipment as valves, pumps, cooling towers, conveyors, and storage tanks Section Two: Process Plant Reliability sets forth a variety of tested and proven tools and methods to assess and ensure the reliability and mechanical integrity of process equipment, including failure analysis, Fitness-for-Service assessment, engineering economics for chemical processes, and process component function and performance criteria Section Three: Process Measurement, Control, and Modeling examines flow meters, process control, and process modeling and simulation Throughout the book, numerous photos and diagrams illustrate the operation and control of key process equipment. There are also case studies demonstrating how actual process plants have implemented the tools and techniques discussed in the book. At the end of each chapter, an extensive list of references enables readers to explore each individual topic in greater depth. In summary, this text offers students, process engineers, and plant managers the expertise and technical support needed to streamline and optimize the operation of process plant equipment, from its initial selection to operations to troubleshooting.
Comprehensively covers the engineering aspects of corrosion and materials in hydrocarbon production This book captures the current understanding of corrosion processes in upstream operations and provides a brief overview of parameters and measures needed for optimum design of facilities. It focuses on internal corrosion occurring in hydrocarbon production environments and the key issues affecting its occurrence, including: the types and morphology of corrosion damage; principal metallic materials deployed; and mitigating measures to optimise its occurrence. The book also highlights important areas of progress and challenges, and looks toward the future of research and development to enable improved and economical design of facilities for oil and a gas production. Written for both those familiar and unfamiliar with the subject—and by two authors with more than 60 years combined industry experience—this book covers everything from Corrosion Resistant Alloys (CRAs) to internal metal loss corrosion threats, corrosion in injection systems to microbiologically influenced corrosion, corrosion risk analysis to corrosion and integrity management, and more, notably: Comprehensively covers the engineering aspects of corrosion and materials in hydrocarbon production Written by two, renowned experts in the field Offers practical guide to those unfamiliar with the subject whilst providing a focused roadmap to addressing the topics in a precise and methodical manner Covers all aspects of corrosion threat and remedial and mitigation measures in upstream hydrocarbon production applicable to sub-surface, surface, and transportation facilities Outlines technology challenges that need further research as a pre-cursor to moving the industry forward. Operational and Engineering Aspects of Corrosion and Materials in Hydrocarbon Production is an excellent guide for both practicing materials and corrosion engineers working in hydrocarbons production as well as those entering the area who may not be fully familiar with the subject.