Powered Prostheses

Powered Prostheses

Author: Houman Dallali

Publisher: Academic Press

Published: 2020-04-17

Total Pages: 282

ISBN-13: 012817451X

DOWNLOAD EBOOK

Powered Prostheses: Design, Control, and Clinical Applications presents the state-of-the-art in design, control and application of assistive technologies used in rehabilitation, including powered prostheses used in lower and upper extremity amputees and orthosis used in the rehabilitation of various joint disorders. The progress made in this field over the last decade is so vast that any new researcher in this field will have to spend years digesting the main achievements and challenges that remain. This book provides a comprehensive vision of advances, along with the challenges that remain on the path to the development of true bionic technology. - Describes the latest assistive technologies that can help individuals deal with joint pain or limb loss - Presents a tangible and intuitive description of scientific achievements made - Highlights the existing technologies and devices that are available and used by amputees or patients with mobility limitations - Suggests solutions and new results that can further enhance assistive technologies


Biped Locomotion

Biped Locomotion

Author: Miomir Vukobratovic

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 366

ISBN-13: 3642830064

DOWNLOAD EBOOK

Here for the first time in one book is a comprehensive and systematic approach to the dynamic modeling and control of biped locomotion robots. A survey is included of various approaches to the control of biped robots, and a new approach to the control of biped systems based on a complete dynamic model is presented in detail. The stability of complete biped system is presented for the first time as a highly nonlinear dynamic system. Also included is new software for the synthesis of a dynamically stable walk for arbitrary biped systems, presented here for the first time. A survey of various realizations of biped systems and numerous numerical examples are given. The reader is given a deep insight into the entire area of biped locomotion. The book covers all relevant approaches to the subject and gives the most complete account to date of dynamic modeling, control and realizations of biped systems.


Social Informatics

Social Informatics

Author: Samin Aref

Publisher: Springer Nature

Published: 2020-10-08

Total Pages: 479

ISBN-13: 3030609758

DOWNLOAD EBOOK

This volume constitutes the proceedings of the 12th International Conference on Social Informatics, SocInfo 2020, held in Pisa, Italy, in October 2020. The 30 full and 3 short papers presented in these proceedings were carefully reviewed and selected from 99 submissions. The papers presented in this volume cover a broad range of topics, ranging from works that ground information-system design on social concepts, to papers that analyze complex social systems using computational methods, or explore socio-technical systems using social sciences methods.


Bipedal Robots

Bipedal Robots

Author: Christine Chevallereau

Publisher: John Wiley & Sons

Published: 2013-03-01

Total Pages: 249

ISBN-13: 1118622979

DOWNLOAD EBOOK

This book presents various techniques to carry out the gait modeling, the gait patterns synthesis, and the control of biped robots. Some general information on the human walking, a presentation of the current experimental biped robots, and the application of walking bipeds are given. The modeling is based on the decomposition on a walking step into different sub-phases depending on the way each foot stands into contact on the ground. The robot design is dealt with according to the mass repartition and the choice of the actuators. Different ways to generate walking patterns are considered, such as passive walking and gait synthesis performed using optimization technique. Control based on the robot modeling, neural network methods, or intuitive approaches are presented. The unilaterality of contact is dealt with using on-line adaptation of the desired motion.


Cable-Driven Parallel Robots

Cable-Driven Parallel Robots

Author: Tobias Bruckmann

Publisher: Springer Science & Business Media

Published: 2012-09-09

Total Pages: 443

ISBN-13: 3642319874

DOWNLOAD EBOOK

Gathering presentations to the First International Conference on Cable-Driven Parallel Robots, this book covers classification and definition, kinematics, workspace analysis, cable modeling, hardware/prototype development, control and calibration and more.


Artificial Animals for Computer Animation

Artificial Animals for Computer Animation

Author: Xiaoyuan Tu

Publisher: Springer Science & Business Media

Published: 1999-12-15

Total Pages: 176

ISBN-13: 3540669396

DOWNLOAD EBOOK

This book is based on the author's phD thesis, which won the 1996 ACM Doctoral Dissertation Award. The author proposes and develops an artificial life paradigm for computer graphics animation by systematically constructing artificial animals controlled by self-animating autonomous agents. The animation agents emulate the realistic appearance, movement, and behavior of individual animals, as well as the patterns of social behavior evident in groups of animals. The paradigm is based on a computational model capturing the essential characteristics common to all biological creatures: biomechanics, locomotion, perception, and behavior. The approach is validated through the implementation of a virtual marine world inhabited by a variety of lifelike artificial fish, where each fish is a functional autonomous agent.


Humanoid Robots

Humanoid Robots

Author: Dragomir N. Nenchev

Publisher: Butterworth-Heinemann

Published: 2018-11-21

Total Pages: 510

ISBN-13: 0128045825

DOWNLOAD EBOOK

Humanoid Robots: Modeling and Control provides systematic presentation of the models used in the analysis, design and control of humanoid robots. The book starts with a historical overview of the field, a summary of the current state of the art achievements and an outline of the related fields of research. It moves on to explain the theoretical foundations in terms of kinematic, kineto-static and dynamic relations. Further on, a detailed overview of biped balance control approaches is presented. Models and control algorithms for cooperative object manipulation with a multi-finger hand, a dual-arm and a multi-robot system are also discussed. One of the chapters is devoted to selected topics from the area of motion generation and control and their applications. The final chapter focuses on simulation environments, specifically on the step-by-step design of a simulator using the Matlab® environment and tools. This book will benefit readers with an advanced level of understanding of robotics, mechanics and control such as graduate students, academic and industrial researchers and professional engineers. Researchers in the related fields of multi-legged robots, biomechanics, physical therapy and physics-based computer animation of articulated figures can also benefit from the models and computational algorithms presented in the book. Provides a firm theoretical basis for modelling and control algorithm design Gives a systematic presentation of models and control algorithms Contains numerous implementation examples demonstrated with 43 video clips


Finite Element Method Simulation of 3D Deformable Solids

Finite Element Method Simulation of 3D Deformable Solids

Author: Eftychios Sifakis

Publisher: Springer Nature

Published: 2022-06-01

Total Pages: 57

ISBN-13: 3031025857

DOWNLOAD EBOOK

This book serves as a practical guide to simulation of 3D deformable solids using the Finite Element Method (FEM). It reviews a number of topics related to the theory and implementation of FEM approaches: measures of deformation, constitutive laws of nonlinear materials, tetrahedral discretizations, and model reduction techniques for real-time simulation. Simulations of deformable solids are important in many applications in computer graphics, including film special effects, computer games, and virtual surgery. The Finite Element Method has become a popular tool in many such applications. Variants of FEM catering to both offline and real-time simulation have had a mature presence in computer graphics literature. This book is designed for readers familiar with numerical simulation in computer graphics, who would like to obtain a cohesive picture of the various FEM simulation methods available, their strengths and weaknesses, and their applicability in various simulation scenarios. The book is also a practical implementation guide for the visual effects developer, offering a lean yet adequate synopsis of the underlying mathematical theory. Chapter 1 introduces the quantitative descriptions used to capture the deformation of elastic solids, the concept of strain energy, and discusses how force and stress result as a response to deformation. Chapter 2 reviews a number of constitutive models, i.e., analytical laws linking deformation to the resulting force that has successfully been used in various graphics-oriented simulation tasks. Chapter 3 summarizes how deformation and force can be computed discretely on a tetrahedral mesh, and how an implicit integrator can be structured around this discretization. Finally, chapter 4 presents the state of the art in model reduction techniques for real-time FEM solid simulation and discusses which techniques are suitable for which applications. Topics discussed in this chapter include linear modal analysis, modal warping, subspace simulation, and domain decomposition.