The purpose of this book is to provide a comprehensive discussion of the available results for discrete time branching processes with random control functions. The independence of individuals’ reproduction is a fundamental assumption in the classical branching processes. Alternatively, the controlled branching processes (CBPs) allow the number of reproductive individuals in one generation to decrease or increase depending on the size of the previous generation. Generating a wide range of behaviors, the CBPs have been successfully used as modeling tools in diverse areas of applications.
This volume gathers papers originally presented at the 3rd Workshop on Branching Processes and their Applications (WBPA15), which was held from 7 to 10 April 2015 in Badajoz, Spain (http://branching.unex.es/wbpa15/index.htm). The papers address a broad range of theoretical and practical aspects of branching process theory. Further, they amply demonstrate that the theoretical research in this area remains vital and topical, as well as the relevance of branching concepts in the development of theoretical approaches to solving new problems in applied fields such as Epidemiology, Biology, Genetics, and, of course, Population Dynamics. The topics covered can broadly be classified into the following areas: 1. Coalescent Branching Processes 2. Branching Random Walks 3. Population Growth Models in Varying and Random Environments 4. Size/Density/Resource-Dependent Branching Models 5. Age-Dependent Branching Models 6. Special Branching Models 7. Applications in Epidemiology 8. Applications in Biology and Genetics Offering a valuable reference guide to contemporary branching process theory, the book also explores many open problems, paving the way for future research.
One of the charms of mathematics is the contrast between its generality and its applicability to concrete, even everyday, problems. Branching processes are typical in this. Their niche of mathematics is the abstract pattern of reproduction, sets of individuals changing size and composition through their members reproducing; in other words, what Plato might have called the pure idea behind demography, population biology, cell kinetics, molecular replication, or nuclear ?ssion, had he known these scienti?c ?elds. Even in the performance of algorithms for sorting and classi?cation there is an inkling of the same pattern. In special cases, general properties of the abstract ideal then interact with the physical or biological or whatever properties at hand. But the population, or bran- ing, pattern is strong; it tends to dominate, and here lies the reason for the extreme usefulness of branching processes in diverse applications. Branching is a clean and beautiful mathematical pattern, with an intellectually challenging intrinsic structure, and it pervades the phenomena it underlies.
This volume presents the edited proceedings of the First World Congress on Branching Processes. The contributions present new research and surveys of the current research activity in this field. As a result, all those undertaking research in the subject will find this a timely and high-quality volume to have on their shelves.
This book covers new and significant research related to the mathematical modelling of engineering and environmental processes, manufacturing, and industrial systems. It includes heat transfer, fluid mechanics, CFD, and transport phenomena; solid mechanics and mechanics of metals; electromagnets and MHD; reliability modelling and system optimisation; finite volume, finite element, and boundary element procedures; decision sciences in an industrial and manufacturing context; civil engineering systems and structures; mineral and energy resources; relevant software engineering issues associated with CAD and CAE; and materials and metallurgical engineering.
This textbook presents some basic stochastic processes, mainly Markov processes. It begins with a brief introduction to the framework of stochastic processes followed by the thorough discussion on Markov chains, which is the simplest and the most important class of stochastic processes. The book then elaborates the theory of Markov chains in detail including classification of states, the first passage distribution, the concept of periodicity and the limiting behaviour of a Markov chain in terms of associated stationary and long run distributions. The book first illustrates the theory for some typical Markov chains, such as random walk, gambler's ruin problem, Ehrenfest model and Bienayme-Galton-Watson branching process; and then extends the discussion when time parameter is continuous. It presents some important examples of a continuous time Markov chain, which include Poisson process, birth process, death process, birth and death processes and their variations. These processes play a fundamental role in the theory and applications in queuing and inventory models, population growth, epidemiology and engineering systems. The book studies in detail the Poisson process, which is the most frequently applied stochastic process in a variety of fields, with its extension to a renewal process. The book also presents important basic concepts on Brownian motion process, a stochastic process of historic importance. It covers its few extensions and variations, such as Brownian bridge, geometric Brownian motion process, which have applications in finance, stock markets, inventory etc. The book is designed primarily to serve as a textbook for a one semester introductory course in stochastic processes, in a post-graduate program, such as Statistics, Mathematics, Data Science and Finance. It can also be used for relevant courses in other disciplines. Additionally, it provides sufficient background material for studying inference in stochastic processes. The book thus fulfils the need of a concise but clear and student-friendly introduction to various types of stochastic processes.
Dynamic Programming and Its Applications provides information pertinent to the theory and application of dynamic programming. This book presents the development and future directions for dynamic programming. Organized into four parts encompassing 23 chapters, this book begins with an overview of recurrence conditions for countable state Markov decision problems, which ensure that the optimal average reward exists and satisfies the functional equation of dynamic programming. This text then provides an extensive analysis of the theory of successive approximation for Markov decision problems. Other chapters consider the computational methods for deterministic, finite horizon problems, and present a unified and insightful presentation of several foundational questions. This book discusses as well the relationship between policy iteration and Newton's method. The final chapter deals with the main factors severely limiting the application of dynamic programming in practice. This book is a valuable resource for growth theorists, economists, biologists, mathematicians, and applied management scientists.
Offers a comprehensive introduction to the issues of control of power systems during cascading outages and restoration process Power System Control Under Cascading Failures offers comprehensive coverage of three major topics related to prevention of cascading power outages in a power transmission grid: modelling and analysis, system separation and power system restoration. The book examines modelling and analysis of cascading failures for reliable and efficient simulation and better understanding of important mechanisms, root causes and propagation patterns of failures and power outages. Second, it covers controlled system separation to mitigate cascading failures addressing key questions such as where, when and how to separate. Third, the text explores optimal system restoration from cascading power outages and blackouts by well-designed milestones, optimised procedures and emerging techniques. The authors — noted experts in the field — include state-of-the-art methods that are illustrated in detail as well as practical examples that show how to use them to address realistic problems and improve current practices. This important resource: Contains comprehensive coverage of a focused area of cascading power system outages, addressing modelling and analysis, system separation and power system restoration Offers a description of theoretical models to analyse outages, methods to identify control actions to prevent propagation of outages and restore the system Suggests state-of-the-art methods that are illustrated in detail with hands-on examples that address realistic problems to help improve current practices Includes companion website with samples, codes and examples to support the text Written for postgraduate students, researchers, specialists, planners and operation engineers from industry, Power System Control Under Cascading Failures contains a review of a focused area of cascading power system outages, addresses modelling and analysis, system separation, and power system restoration.
This volume in the series contains chapters on areas such as pareto processes, branching processes, inference in stochastic processes, Poisson approximation, Levy processes, and iterated random maps and some classes of Markov processes. Other chapters cover random walk and fluctuation theory, a semigroup representation and asymptomatic behavior of certain statistics of the Fisher-Wright-Moran coalescent, continuous-time ARMA processes, record sequence and their applications, stochastic networks with product form equilibrium, and stochastic processes in insurance and finance. Other subjects include renewal theory, stochastic processes in reliability, supports of stochastic processes of multiplicity one, Markov chains, diffusion processes, and Ito's stochastic calculus and its applications. c. Book News Inc.