Control of Robot Manipulators in Joint Space

Control of Robot Manipulators in Joint Space

Author: Rafael Kelly

Publisher: Springer Science & Business Media

Published: 2007-12-14

Total Pages: 430

ISBN-13: 1852339993

DOWNLOAD EBOOK

Tutors can design entry-level courses in robotics with a strong orientation to the fundamental discipline of manipulator control pdf solutions manual Overheads will save a great deal of time with class preparation and will give students a low-effort basis for more detailed class notes Courses for senior undergraduates can be designed around Parts I – III; these can be augmented for masters courses using Part IV


Control of Robot Manipulators in Joint Space

Control of Robot Manipulators in Joint Space

Author: Rafael Kelly

Publisher: Springer Science & Business Media

Published: 2005-06-27

Total Pages: 746

ISBN-13: 9781852339944

DOWNLOAD EBOOK

Tutors can design entry-level courses in robotics with a strong orientation to the fundamental discipline of manipulator control pdf solutions manual Overheads will save a great deal of time with class preparation and will give students a low-effort basis for more detailed class notes Courses for senior undergraduates can be designed around Parts I – III; these can be augmented for masters courses using Part IV


Control of Robot Manipulators in Joint Space

Control of Robot Manipulators in Joint Space

Author: Rafael Kelly

Publisher: Springer

Published: 2009-10-12

Total Pages: 426

ISBN-13: 9781848008915

DOWNLOAD EBOOK

Tutors can design entry-level courses in robotics with a strong orientation to the fundamental discipline of manipulator control pdf solutions manual Overheads will save a great deal of time with class preparation and will give students a low-effort basis for more detailed class notes Courses for senior undergraduates can be designed around Parts I – III; these can be augmented for masters courses using Part IV


Robot Force Control

Robot Force Control

Author: Bruno Siciliano

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 154

ISBN-13: 1461544319

DOWNLOAD EBOOK

One of the fundamental requirements for the success of a robot task is the capability to handle interaction between manipulator and environment. The quantity that describes the state of interaction more effectively is the contact force at the manipulator's end effector. High values of contact force are generally undesirable since they may stress both the manipulator and the manipulated object; hence the need to seek for effective force control strategies. The book provides a theoretical and experimental treatment of robot interaction control. In the framework of model-based operational space control, stiffness control and impedance control are presented as the basic strategies for indirect force control; a key feature is the coverage of six-degree-of-freedom interaction tasks and manipulator kinematic redundancy. Then, direct force control strategies are presented which are obtained from motion control schemes suitably modified by the closure of an outer force regulation feedback loop. Finally, advanced force and position control strategies are presented which include passivity-based, adaptive and output feedback control schemes. Remarkably, all control schemes are experimentally tested on a setup consisting of a seven-joint industrial robot with open control architecture and force/torque sensor. The topic of robot force control is not treated in depth in robotics textbooks, in spite of its crucial importance for practical manipulation tasks. In the few books addressing this topic, the material is often limited to single-degree-of-freedom tasks. On the other hand, several results are available in the robotics literature but no dedicated monograph exists. The book is thus aimed at filling this gap by providing a theoretical and experimental treatment of robot force control.


Modelling and Control of Robot Manipulators

Modelling and Control of Robot Manipulators

Author: Lorenzo Sciavicco

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 391

ISBN-13: 1447104498

DOWNLOAD EBOOK

Fundamental and technological topics are blended uniquely and developed clearly in nine chapters with a gradually increasing level of complexity. A wide variety of relevant problems is raised throughout, and the proper tools to find engineering-oriented solutions are introduced and explained, step by step. Fundamental coverage includes: Kinematics; Statics and dynamics of manipulators; Trajectory planning and motion control in free space. Technological aspects include: Actuators; Sensors; Hardware/software control architectures; Industrial robot-control algorithms. Furthermore, established research results involving description of end-effector orientation, closed kinematic chains, kinematic redundancy and singularities, dynamic parameter identification, robust and adaptive control and force/motion control are provided. To provide readers with a homogeneous background, three appendices are included on: Linear algebra; Rigid-body mechanics; Feedback control. To acquire practical skill, more than 50 examples and case studies are carefully worked out and interwoven through the text, with frequent resort to simulation. In addition, more than 80 end-of-chapter exercises are proposed, and the book is accompanied by a solutions manual containing the MATLAB code for computer problems; this is available from the publisher free of charge to those adopting this work as a textbook for courses.


Modern Robotics

Modern Robotics

Author: Kevin M. Lynch

Publisher: Cambridge University Press

Published: 2017-05-25

Total Pages: 545

ISBN-13: 1107156300

DOWNLOAD EBOOK

A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics.


Theory of Robot Control

Theory of Robot Control

Author: Carlos Canudas de Wit

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 392

ISBN-13: 1447115015

DOWNLOAD EBOOK

A study of the latest research results in the theory of robot control, structured so as to echo the gradual development of robot control over the last fifteen years. In three major parts, the editors deal with the modelling and control of rigid and flexible robot manipulators and mobile robots. Most of the results on rigid robot manipulators in part I are now well established, while for flexible manipulators in part II, some problems still remain unresolved. Part III deals with the control of mobile robots, a challenging area for future research. The whole is rounded off with an appendix reviewing basic definitions and the mathematical background for control theory. The particular combination of topics makes this an invaluable source of information for both graduate students and researchers.


Task-Space Sensory Feedback Control of Robot Manipulators

Task-Space Sensory Feedback Control of Robot Manipulators

Author: Chien Chern Cheah

Publisher: Springer

Published: 2015-04-09

Total Pages: 228

ISBN-13: 9812870628

DOWNLOAD EBOOK

This book presents recent advances in robot control theory on task space sensory feedback control of robot manipulators. By using sensory feedback information, the robot control systems are robust to various uncertainties in modelling and calibration errors of the sensors. Several sensory task space control methods that do not require exact knowledge of either kinematics or dynamics of robots, are presented. Some useful methods such as approximate Jacobian control, adaptive Jacobian control, region control and multiple task space regional feedback are included. These formulations and methods give robots a high degree of flexibility in dealing with unforeseen changes and uncertainties in its kinematics and dynamics, which is similar to human reaching movements and tool manipulation. It also leads to the solution of several long-standing problems and open issues in robot control, such as force control with constraint uncertainty, control of multi-fingered robot hand with uncertain contact points, singularity issue of Jacobian matrix, global task-space control, which are also presented in this book. The target audience for this book includes scientists, engineers and practitioners involved in the field of robot control theory.


A Mathematical Introduction to Robotic Manipulation

A Mathematical Introduction to Robotic Manipulation

Author: Richard M. Murray

Publisher: CRC Press

Published: 2017-12-14

Total Pages: 488

ISBN-13: 1351469789

DOWNLOAD EBOOK

A Mathematical Introduction to Robotic Manipulation presents a mathematical formulation of the kinematics, dynamics, and control of robot manipulators. It uses an elegant set of mathematical tools that emphasizes the geometry of robot motion and allows a large class of robotic manipulation problems to be analyzed within a unified framework. The foundation of the book is a derivation of robot kinematics using the product of the exponentials formula. The authors explore the kinematics of open-chain manipulators and multifingered robot hands, present an analysis of the dynamics and control of robot systems, discuss the specification and control of internal forces and internal motions, and address the implications of the nonholonomic nature of rolling contact are addressed, as well. The wealth of information, numerous examples, and exercises make A Mathematical Introduction to Robotic Manipulation valuable as both a reference for robotics researchers and a text for students in advanced robotics courses.