22 papers on control of nonlinear partial differential equations highlight the area from a broad variety of viewpoints. They comprise theoretical considerations such as optimality conditions, relaxation, or stabilizability theorems, as well as the development and evaluation of new algorithms. A significant part of the volume is devoted to applications in engineering, continuum mechanics and population biology.
Research in control and estimation of distributed parameter systems encompasses a wide range of applications including both fundamental science and emerging technologies. The latter include smart materials (piezoceramics, shape memory alloys, magnetostrictives, electrorheological fluids) fabrication and testing, design of high-pressure chemical vapor deposition (CVD) reactors for production of microelectronic surfaces (e.g., semiconductors), while the former include groundwater contamination cleanup and other environmental modeling questions, climatology, flow control, and fluid-structure interactions as well as more traditional topics in biology, mechanics, and acoustics. These expository papers provide substantial stimulus to both young researchers and experienced investigators in control theory. Includes a comprehensive and lucid presentation that relates frequency domain techniques to state-space or time domain approaches for infinite-dimensional systems including design of robust stabilizing and finite-dimensional controllers for infinite-dimensional systems. It focuses on these two approaches to control design in an integrated system theoretic framework. This is excellent reading for researchers in both the frequency domain and time domain control communities. In other articles, topics considered include pointwise control of distributed parameter systems, bounded and unbounded sensors and actuators, stabilization issues for large flexible structures, and an overview discussion of damping models for flexible structures.
This volume presents state-of-the-art reports on the theory, and current and future applications of control of distributed parameter systems. The papers cover the progress not only in traditional methodology and pure research in control theory, but also the rapid growth of its importance for different applications. This title will be of interest to researchers working in the areas of mathematics, automatic control, computer science and engineering.
For dynamic distributed systems modeled by partial differential equations, existing methods of sensor location in parameter estimation experiments are either limited to one-dimensional spatial domains or require large investments in software systems. With the expense of scanning and moving sensors, optimal placement presents a critical problem.
The purpose of this volume is to provide a brief review of the previous work on model reduction and identifi cation of distributed parameter systems (DPS), and develop new spatio-temporal models and their relevant identifi cation approaches. In this book, a systematic overview and classifi cation on the modeling of DPS is presented fi rst, which includes model reduction, parameter estimation and system identifi cation. Next, a class of block-oriented nonlinear systems in traditional lumped parameter systems (LPS) is extended to DPS, which results in the spatio-temporal Wiener and Hammerstein systems and their identifi cation methods. Then, the traditional Volterra model is extended to DPS, which results in the spatio-temporal Volterra model and its identification algorithm. All these methods are based on linear time/space separation. Sometimes, the nonlinear time/space separation can play a better role in modeling of very complex processes. Thus, a nonlinear time/space separation based neural modeling is also presented for a class of DPS with more complicated dynamics. Finally, all these modeling approaches are successfully applied to industrial thermal processes, including a catalytic rod, a packed-bed reactor and a snap curing oven. The work is presented giving a unifi ed view from time/space separation. The book also illustrates applications to thermal processes in the electronics packaging and chemical industry. This volume assumes a basic knowledge about distributed parameter systems, system modeling and identifi cation. It is intended for researchers, graduate students and engineers interested in distributed parameter systems, nonlinear systems, and process modeling and control.
Control of Distributed Parameter Systems 1982 covers the proceeding of the Third International Federation of Automatic Control (IFAC) Symposium on Control of Distributed Parameter Systems. The book reviews papers that tackle issues concerning the control of distributed parameter systems, such as modeling, identification, estimation, stabilization, optimization, and energy system. The topics that the book tackles include notes on optimal and estimation result of nonlinear systems; approximation of the parameter identification problem in distributed parameters systems; and optimal control of a punctually located heat source. This text also encompasses the stabilization of nonlinear parabolic equations and the decoupling approach to the control of large spaceborne antenna systems. Stability of Hilbert space contraction semigroups and the tracking problem in the fractional representation approach are also discussed. This book will be of great interest to researchers and professionals whose work concerns automated control systems.
In this unified account of the mathematical theory of distributed parameter systems (DPS), the authors cover all major aspects of the control, estimation, and identification of such systems, and their application in engineering problems. The first part of the book is devoted to the basic results in deterministic and stochastic partial differential equations, which are applied to the optimal control and estimation theories for DPS. Part two then applies this knowledge in an engineering setting, discussing optimal estimators, optimal sensor and actuator locations, and computational techniques.
A Practical Guide to Geometric Regulation for Distributed Parameter Systems provides an introduction to geometric control design methodologies for asymptotic tracking and disturbance rejection of infinite-dimensional systems. The book also introduces several new control algorithms inspired by geometric invariance and asymptotic attraction for a wid
Control of Distributed Parameter Systems covers the proceedings of the Second IFAC Symposium, Coventry, held in Great Britain from June 28 to July 1, 1977. The book focuses on the methodologies, processes, and techniques in the control of distributed parameter systems, including boundary value control, digital transfer matrix, and differential equations. The selection first discusses the asymptotic methods in the optimal control of distributed systems; applications of distributed parameter control theory of a survey; and dual variational inequalities for external eigenvalue problems. The book also ponders on stochastic differential equations in Hilbert space and their application to delay systems and linear quadratic optimal control problem over an infinite time horizon for a class of distributed parameter systems. The manuscript investigates the semigroup approach to boundary value control and stability of nonlinear distributed parameter systems. Topics include boundary control action implemented through a dynamical system; classical boundary value controls; stability of nonlinear systems; and feedback control on the boundary. The text also focuses on the functional analysis interpretation of Lyapunov stability; method of multipliers for a class distributed parameter systems; and digital transfer matrix approach to distributed system simulation. The selection is a dependable source of data for readers interested in the control of distributed parameter systems.
This book addresses controller and estimator design for systems that vary both spatially and in time: systems like fluid flow, acoustic noise and flexible structures. It includes coverage of the selection and placement of actuators and sensors for such distributed-parameter systems. The models for distributed parameter systems are coupled ordinary/partial differential equations. Approximations to the governing equations, often of very high order, are required and this complicates both controller design and optimization of the hardware locations. Control system and estimator performance depends not only on the controller/estimator design but also on the location of the hardware. In helping the reader choose the best location for actuators and sensors, the analysis provided in this book is crucial because neither intuition nor trial-and-error is foolproof, especially where multiple sensors and actuators are required, and moving hardware can be difficult and costly. The mechatronic approach advocated, in which controller design is integrated with actuator location, can lead to better performance without increased cost. Similarly, better estimation can be obtained with carefully placed sensors. The text shows how proper hardware placement varies depending on whether, disturbances are present, whether the response should be reduced to an initial condition or whether controllability and/or observability have to be optimized. This book is aimed at non-specialists interested in learning controller design for distributed-parameter systems and the material presented has been used for student teaching. The relevant basic systems theory is presented and followed by a description of controller synthesis using lumped approximations. Numerical algorithms useful for efficient implementation in real engineering systems and practical computational challenges are also described and discussed.