Continuum Thermodynamics - Part I: Foundations

Continuum Thermodynamics - Part I: Foundations

Author: Krzysztof Wilmanski

Publisher: World Scientific

Published: 2008-11-25

Total Pages: 416

ISBN-13: 981446970X

DOWNLOAD EBOOK

This book is a unique presentation of thermodynamic methods of construction of continuous models. It is based on a uniform approach following from the entropy inequality and using Lagrange multipliers as auxiliary quantities in its evaluation. It covers a wide range of models — ideal gases, thermoviscoelastic fluids, thermoelastic and thermoviscoelastic solids, plastic polycrystals, miscible and immiscible mixtures, and many others. The structure of phenomenological thermodynamics is justified by a systematic derivation from the Liouville equation, through the BBGKY-hierarchy-derived Boltzmann equation, to an extended thermodynamics. In order to simplify the reading, an extensive introduction to classical continuum mechanics and thermostatics is included. As a complementary volume to Part II, which will contain applications and examples, and to Part III, which will cover numerical methods, only a few simple examples are presented in this first Part. One exception is an extensive example of a linear poroelastic material because it will not appear in future Parts.The book is the first presentation of continuum thermodynamics in which foundations of continuum mechanics, microscopic foundations and transition to extended thermodynamics, applications of extended thermodynamics beyond ideal gases, and thermodynamic foundations of various material theories are exposed in a uniform and rational way. The book may serve both as a support for advanced courses as well as a desk reference.


Continuum Thermodynamics - Part I

Continuum Thermodynamics - Part I

Author: Krzysztof Wilmanski

Publisher: World Scientific

Published: 2008

Total Pages: 416

ISBN-13: 9812835571

DOWNLOAD EBOOK

This book is a unique presentation of thermodynamic methods of construction of continuous models. It is based on a uniform approach following from the entropy inequality and using Lagrange multipliers as auxiliary quantities in its evaluation. It covers a wide range of models OCo ideal gases, thermoviscoelastic fluids, thermoelastic and thermoviscoelastic solids, plastic polycrystals, miscible and immiscible mixtures, and many others. The structure of phenomenological thermodynamics is justified by a systematic derivation from the Liouville equation, through the BBGKY-hierarchy-derived Boltzmann equation, to an extended thermodynamics. In order to simplify the reading, an extensive introduction to classical continuum mechanics and thermostatics is included. As a complementary volume to Part II, which will contain applications and examples, and to Part III, which will cover numerical methods, only a few simple examples are presented in this first Part. One exception is an extensive example of a linear poroelastic material because it will not appear in future Parts. The book is the first presentation of continuum thermodynamics in which foundations of continuum mechanics, microscopic foundations and transition to extended thermodynamics, applications of extended thermodynamics beyond ideal gases, and thermodynamic foundations of various material theories are exposed in a uniform and rational way. The book may serve both as a support for advanced courses as well as a desk reference.


The Foundations of Mechanics and Thermodynamics

The Foundations of Mechanics and Thermodynamics

Author: W. Noll

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 330

ISBN-13: 3642658172

DOWNLOAD EBOOK

German scholars, against odds now not only forgotten but also hard to imagine, were striving to revivify the life of the mind which the mental and physical barbarity preached and practised by the -isms and -acies of 1933-1946 had all but eradicated. Thinking that among the disciples of these elders, restorers rather than progressives, I might find a student or two who would wish to master new mathematics but grasp it and use it with the wholeness of earlier times, in 1952 I wrote to Mr. HAMEL, one of the few then remaining mathematicians from the classical mould, to ask him to name some young men fit to study for the doc torate in The Graduate Institute for Applied Mathematics at Indiana University, flourishing at that time though soon to be destroyed by the jealous ambition of the local, stereotyped pure. Having just retired from the Technische Universitat in Charlottenburg, he passed my inquiry on to Mr. SZABO, in whose institute there NOLL was then an assistant. Although Mr.


Continuum Damage Mechanics

Continuum Damage Mechanics

Author: Sumio Murakami

Publisher: Springer Science & Business Media

Published: 2012-02-24

Total Pages: 420

ISBN-13: 9400726651

DOWNLOAD EBOOK

Recent developments in engineering and technology have brought about serious and enlarged demands for reliability, safety and economy in wide range of fields such as aeronautics, nuclear engineering, civil and structural engineering, automotive and production industry. This, in turn, has caused more interest in continuum damage mechanics and its engineering applications. This book aims to give a concise overview of the current state of damage mechanics, and then to show the fascinating possibility of this promising branch of mechanics, and to provide researchers, engineers and graduate students with an intelligible and self-contained textbook. The book consists of two parts and an appendix. Part I is concerned with the foundation of continuum damage mechanics. Basic concepts of material damage and the mechanical representation of damage state of various kinds are described in Chapters 1 and 2. In Chapters 3-5, irreversible thermodynamics, thermodynamic constitutive theory and its application to the modeling of the constitutive and the evolution equations of damaged materials are descried as a systematic basis for the subsequent development throughout the book. Part II describes the application of the fundamental theories developed in Part I to typical damage and fracture problems encountered in various fields of the current engineering. Important engineering aspects of elastic-plastic or ductile damage, their damage mechanics modeling and their further refinement are first discussed in Chapter 6. Chapters 7 and 8 are concerned with the modeling of fatigue, creep, creep-fatigue and their engineering application. Damage mechanics modeling of complicated crack closure behavior in elastic-brittle and composite materials are discussed in Chapters 9 and 10. In Chapter 11, applicability of the local approach to fracture by means of damage mechanics and finite element method, and the ensuing mathematical and numerical problems are briefly discussed. A proper understanding of the subject matter requires knowledge of tensor algebra and tensor calculus. At the end of this book, therefore, the foundations of tensor analysis are presented in the Appendix, especially for readers with insufficient mathematical background, but with keen interest in this exciting field of mechanics.


Physical Foundations of Continuum Mechanics

Physical Foundations of Continuum Mechanics

Author: A. Ian Murdoch

Publisher: Cambridge University Press

Published: 2012-10-22

Total Pages: 439

ISBN-13: 1139788787

DOWNLOAD EBOOK

Ian Murdoch's Physical Foundations of Continuum Mechanics will interest engineers, mathematicians, and physicists who study the macroscopic behaviour of solids and fluids or engage in molecular dynamical simulations. In contrast to standard works on the subject, Murdoch's book examines physical assumptions implicit in continuum modelling from a molecular perspective. In so doing, physical interpretations of concepts and fields are clarified by emphasising both their microscopic origin and sensitivity to scales of length and time. Murdoch expertly applies this approach to theories of mixtures, generalised continua, fluid flow through porous media, and systems whose molecular content changes with time. Elements of statistical mechanics are included, for comparison, and two extensive appendices address relevant mathematical concepts and results. This unique and thorough work is an authoritative reference for both students and experts in the field.


Continuum Mechanics and Thermodynamics

Continuum Mechanics and Thermodynamics

Author: Ellad B. Tadmor

Publisher: Cambridge University Press

Published: 2012

Total Pages: 373

ISBN-13: 1107008263

DOWNLOAD EBOOK

Treats subjects directly related to nonlinear materials modeling for graduate students and researchers in physics, materials science, chemistry and engineering.


Elements of Continuum Mechanics and Thermodynamics

Elements of Continuum Mechanics and Thermodynamics

Author: Joanne L. Wegner

Publisher: Cambridge University Press

Published: 2009-04-13

Total Pages: 279

ISBN-13: 1139478389

DOWNLOAD EBOOK

This text is intended to provide a modern and integrated treatment of the foundations and applications of continuum mechanics. There is a significant increase in interest in continuum mechanics because of its relevance to microscale phenomena. In addition to being tailored for advanced undergraduate students and including numerous examples and exercises, this text also features a chapter on continuum thermodynamics, including entropy production in Newtonian viscous fluid flow and thermoelasticity. Computer solutions and examples are emphasized through the use of the symbolic mathematical computing program Mathematica®.


Continuum Thermodynamics

Continuum Thermodynamics

Author: Wilmanski

Publisher: World Scientific

Published: 2008

Total Pages: 416

ISBN-13: 9812835563

DOWNLOAD EBOOK

This book is a unique presentation of thermodynamic methods of construction of continuous models. It is based on a uniform approach following from the entropy inequality and using Lagrange multipliers as auxiliary quantities in its evaluation. It covers a wide range of models — ideal gases, thermoviscoelastic fluids, thermoelastic and thermoviscoelastic solids, plastic polycrystals, miscible and immiscible mixtures, and many others. The structure of phenomenological thermodynamics is justified by a systematic derivation from the Liouville equation, through the BBGKY-hierarchy-derived Boltzmann equation, to an extended thermodynamics. In order to simplify the reading, an extensive introduction to classical continuum mechanics and thermostatics is included. As a complementary volume to Part II, which will contain applications and examples, and to Part III, which will cover numerical methods, only a few simple examples are presented in this first Part. One exception is an extensive example of a linear poroelastic material because it will not appear in future Parts.The book is the first presentation of continuum thermodynamics in which foundations of continuum mechanics, microscopic foundations and transition to extended thermodynamics, applications of extended thermodynamics beyond ideal gases, and thermodynamic foundations of various material theories are exposed in a uniform and rational way. The book may serve both as a support for advanced courses as well as a desk reference.


Continuum Mechanics

Continuum Mechanics

Author: Fridtjov Irgens

Publisher: Springer Science & Business Media

Published: 2008-01-10

Total Pages: 667

ISBN-13: 3540742980

DOWNLOAD EBOOK

This book presents an introduction into the entire science of Continuum Mechanics in three parts. The presentation is modern and comprehensive. Its introduction into tensors is very gentle. The book contains many examples and exercises, and is intended for scientists, practitioners and students of mechanics.


Fundamentals of Continuum Mechanics

Fundamentals of Continuum Mechanics

Author: Stephen Bechtel

Publisher: Academic Press

Published: 2014-12-02

Total Pages: 347

ISBN-13: 0123948347

DOWNLOAD EBOOK

Fundamentals of Continuum Mechanics provides a clear and rigorous presentation of continuum mechanics for engineers, physicists, applied mathematicians, and materials scientists. This book emphasizes the role of thermodynamics in constitutive modeling, with detailed application to nonlinear elastic solids, viscous fluids, and modern smart materials. While emphasizing advanced material modeling, special attention is also devoted to developing novel theories for incompressible and thermally expanding materials. A wealth of carefully chosen examples and exercises illuminate the subject matter and facilitate self-study. - Uses direct notation for a clear and straightforward presentation of the mathematics, leading to a better understanding of the underlying physics - Covers high-interest research areas such as small- and large-deformation continuum electrodynamics, with application to smart materials used in intelligent systems and structures - Offers a unique approach to modeling incompressibility and thermal expansion, based on the authors' own research