Search structures support the fundamental data storage primitives on key-value pairs: insert a pair, delete by key, search by key, and update the value associated with a key. Concurrent search structures are parallel algorithms to speed access to search structures on multicore and distributed servers. These sophisticated algorithms perform fine-grained synchronization between threads, making them notoriously difficult to design correctly. Indeed, bugs have been found both in actual implementations and in the designs proposed by experts in peer-reviewed publications. The rapid development and deployment of these concurrent algorithms has resulted in a rift between the algorithms that can be verified by the state-of-the-art techniques and those being developed and used today. The goal of this book is to show how to bridge this gap in order to bring the certified safety of formal verification to high-performance concurrent search structures. Similar techniques and frameworks can be applied to concurrent graph and network algorithms beyond search structures.
HIS BOOK CONTAINS a most comprehensive text that presents syntax-directed and compositional methods for the formal veri?- T cation of programs. The approach is not language-bounded in the sense that it covers a large variety of programming models and features that appear in most modern programming languages. It covers the classes of - quential and parallel, deterministic and non-deterministic, distributed and object-oriented programs. For each of the classes it presents the various c- teria of correctness that are relevant for these classes, such as interference freedom, deadlock freedom, and appropriate notions of liveness for parallel programs. Also, special proof rules appropriate for each class of programs are presented. In spite of this diversity due to the rich program classes cons- ered, there exist a uniform underlying theory of veri?cation which is synt- oriented and promotes compositional approaches to veri?cation, leading to scalability of the methods. The text strikes the proper balance between mathematical rigor and - dactic introduction of increasingly complex rules in an incremental manner, adequately supported by state-of-the-art examples. As a result it can serve as a textbook for a variety of courses on di?erent levels and varying durations. It can also serve as a reference book for researchers in the theory of veri?- tion, in particular since it contains much material that never before appeared in book form. This is specially true for the treatment of object-oriented p- grams which is entirely novel and is strikingly elegant.
This volume contains papers presented at the BCS-FACS Workshop on Specification and Verification of Concurrent Systems held on 6-8 July 1988, at the University of Stirling, Scotland. Specification and verification techniques are playing an increasingly important role in the design and production of practical concurrent systems. The wider application of these techniques serves to identify difficult problems that require new approaches to their solution and further developments in specification and verification. The Workshop aimed to capture this interplay by providing a forum for the exchange of the experience of academic and industrial experts in the field. Presentations included: surveys, original research, practical experi ence with methods, tools and environments in the following or related areas: Object-oriented, process, data and logic based models and specifi cation methods for concurrent systems Verification of concurrent systems Tools and environments for the analysis of concurrent systems Applications of specification languages to practical concurrent system design and development. We should like to thank the invited speakers and all the authors of the papers whose work contributed to making the Workshop such a success. We were particularly pleased with the international response to our call for papers. Invited Speakers Pierre America Philips Research Laboratories University of Warwick Professor M. Joseph David Freestone British Telecom Organising Committee Charles Rattray Dr Muffy Thomas Dr Simon Jones Dr John Cooke Professor Ken Turner Derek Coleman Maurice Naftalin Dr Peter Scharbach vi Preface We would like to aeknowledge the finaneial eontribution made by SD-Sysems Designers pie, Camberley, Surrey.
This Festschrift volume, published in honor of Willem-Paul de Roever, contains 19 detailed papers written by the friends and colleagues of the honoree, all eminent scientists in their own right. These are preceded by a detailed bibliography and rounded off, at the end of the book, with a gallery of photographs. The theme under which the papers have been collected is Concurrency, Compositionality, and Correctness, reflecting the focus of Willem-Paul de Roever's research career. Topics addressed include model checking, computer science and state machines, ontology and mereology of domains, game theory, compiler correctness, fair scheduling and encryption algorithms.
This open access two-volume set LNCS 12759 and 12760 constitutes the refereed proceedings of the 33rd International Conference on Computer Aided Verification, CAV 2021, held virtually in July 2021. The 63 full papers presented together with 16 tool papers and 5 invited papers were carefully reviewed and selected from 290 submissions. The papers were organized in the following topical sections: Part I: invited papers; AI verification; concurrency and blockchain; hybrid and cyber-physical systems; security; and synthesis. Part II: complexity and termination; decision procedures and solvers; hardware and model checking; logical foundations; and software verification. This is an open access book.
The two-volume set LNCS 9206 and LNCS 9207 constitutes the refereed proceedings of the 27th International Conference on Computer Aided Verification, CAV 2015, held in San Francisco, CA, USA, in July 2015. The total of 58 full and 11 short papers presented in the proceedings was carefully reviewed and selected from 252 submissions. The papers were organized in topical sections named: model checking and refinements; quantitative reasoning; software analysis; lightning talks; interpolation, IC3/PDR, and Invariants; SMT techniques and applications; HW verification; synthesis; termination; and concurrency.
This book constitutes the proceedings of the 21st International Conference on Verification, Model Checking, and Abstract Interpretation, VMCAI 2020. The 21 papers presented in this volume were carefully reviewed from 44 submissions. VMCAI provides a forum for researchers from the communities of verification, model checking, and abstract Interpretation, facilitating interaction, cross-fertilization, and advancement of hybrid methods that combine these and related areas.
This book constitutes the proceedings of the 44th International Conference on Application and Theory of Petri Nets and Concurrency, PETRI NETS 2023, which took place in Lisbon, Portugal, in June 2023. The 21 full papers included in this book were carefully reviewed and selected from 47 submissions. They were organized in topical sections as follows: Process mining; semantics; tools; verification; timed models; model transformation. The book also includes two invited talks in full paper length.
The two-volume set LNCS 10426 and LNCS 10427 constitutes the refereed proceedings of the 29th International Conference on Computer Aided Verification, CAV 2017, held in Heidelberg, Germany, in July 2017. The total of 50 full and 7 short papers presented together with 5 keynotes and tutorials in the proceedings was carefully reviewed and selected from 191 submissions. The CAV conference series is dedicated to the advancement of the theory and practice of computer-aided formal analysis of hardware and software systems. The conference covers the spectrum from theoretical results to concrete applications, with an emphasis on practical verification tools and the algorithms and techniques that are needed for their implementation.