Concrete structures must be designed both to be safe against failure and to perform satisfactorily in use. This book is written for practising engineers, students and designers and concentrates on design methods for checking the main serviceability requirements of control of deflections and cracking in reinforced and prestressed concrete structures.
This text presents the most effective analysis for predicting the true stresses and deflections of concrete structures, accounting for creep and shrinkage of concrete and relaxation of prestressed reinforcement. Sustainability has become a major requirement in modern structures, which need to sustain satisfactory service over a longer life. It is not rare to specify a life span of 100 years for infrastructure such as bridges. This complete and wide-ranging study of stresses and deformations of reinforced and prestressed concrete structures focuses on design methods for avoiding the deflections and cracking that diminish serviceability. This fourth edition has a new emphasis on designing for serviceability. It has been comprehensively updated. It now includes 65 solved examples and more than 45 instructive problems with answers given at the end of the book. An accompanying website contains design calculation programs, which allow interactive data input. Independent of codes of practice, the book is universally applicable, and is especially suitable for practising engineers and graduate students.
This book is based on Reinforced Concrete-Prestressed Concrete, Volume 2, Accounting for the Effects of Creep and Shrinkage on the Behavior of Structural Systems by Hubert Rusch and Dieter Jungwirth, which appeared in German in 1976. Even then, it was Hubert Rusch's fervent wish to have his thoughts on the deformations of concrete translated into English in order to reach a wider audience. His earlier efforts to contribute a study to the Series of Monographs of the Ameri can Institute had unfortunately not succeeded. Despite a serious illness, Hubert Rusch undertook, with his characteristic prudence and thoroughness, the preparatory work for the translation and related revision of his book. Unfortunately fate did not grant him the satisfaction of seeing his work completed. Hubert Rusch died on October 17, 1979. In writing this book, Hubert Rusch drew on his many years of devoted study of the creep problem. These investigations go back to 1934. His awareness of the plastic deformation of concrete under sustained load, which had been reported to him on the occasion of an American sojourn, led him to discover the causes of a major building collapse. At his urging, Professor A. Hummel published, in 1935, a critical survey of the test results then available on concrete creep.
17 2 STRESS FIELDS FOR SIMPLE STRUCTURES 2. 1 INTRODUCTION In this chapter the behavior and strength of simple structures made of rein forced or prestressed concrete is investigated with the aid of stress fields. In particular, the webs and flanges of beams, simple walls, brackets, bracing beams and joints of frames are investigated. By this means, the majority of design cases are already covered. In reality, all structural components are three-dimensional. Here, however, components are considered either directly as two-dimensional plate elements (i. e. the plane stress condition with no variation of stress over the thickness of the element) or they are subdivided into several plates. Since two-dimensional structural elements are statically redundant, it is pOSSible for a particular loading to be in equilibrium with many (theoretically an infinite number of) stress states. If the lower bound method of the theory of plasticity is employed, then an admissible stress field or any combination of such stress fields may be selected. In chapter 4 it is shown that this method is suitable for the design of reinforced concrete structures, and the consequence of the choice of the final structural system on the structural behavior is dealt with in detail. The first cases of the use of this method date back to Ritter [6] and Morsch [4], who already at the beginning of the century investigated the resultants of the internal stresses by means of truss models.
Concrete structures must be designed not only to be safe against failure but also to perform satisfactorily in use. This book is written for practising engineers and students, and focuses on design methods for checking deflections and cracking which can affect the serviceability of reinforced and prestressed concrete structures. The authors present accurate and easy-to-apply methods of analysing immediate and long-term stresses and deformations. These methods allow designers to account for variations of concrete properties from project to project and from country to country, making the book universally applicable. Comprehensively updated, this third edition of Concrete Structures also includes four new chapters covering such topics as: non-linear analysis of plane frames, design for serviceability of prestressed concrete, serviceability of members reinforced with fibre polymer bars, and the analysis of time-dependent internal forces with linear computer programs that are routinely used by structural designers. A website accompanies the book, featuring three design calculation programs related to stresses in cracked sections, creep coefficients and time-dependent analysis. The book contains numerous examples, some of which are worked out in the SI units and others in the Imperial units. The input data and the main results are given in both SI and Imperial units. The book is not tied to any specific code, although the latest American and European codes of practice are covered in the appendices.
Serviceability failures of concrete structures involving excessive cracking or deflection are relatively common, even in structures that comply with code requirements. This is often as a result of a failure to adequately account for the time-dependent deformations of concrete in the design of the structure. The serviceability provisions embodied in
Concrete structures must be designed not only to be safe against failure but also to perform satisfactorily in use. This book is written for practising engineers and students, and focuses on design methods for checking deflections and cracking which can affect the serviceability of reinforced and prestressed concrete structures. The authors present accurate and easy-to-apply methods of analysing immediate and long-term stresses and deformations. These methods allow designers to account for variations of concrete properties from project to project and from country to country, making the book universally applicable. Comprehensively updated, this third edition of Concrete Structures also includes four new chapters covering such topics as: non-linear analysis of plane frames, design for serviceability of prestressed concrete, serviceability of members reinforced with fibre polymer bars, and the analysis of time-dependent internal forces with linear computer programs that are routinely used by structural designers. A website accompanies the book, featuring three design calculation programs related to stresses in cracked sections, creep coefficients and time-dependent analysis. The book contains numerous examples, some of which are worked out in the SI units and others in the Imperial units. The input data and the main results are given in both SI and Imperial units. The book is not tied to any specific code, although the latest American and European codes of practice are covered in the appendices.
The range of fibre-reinforced polymer (FRP) applications in new construction, and in the retrofitting of existing civil engineering infrastructure, is continuing to grow worldwide. Furthermore, this progress is being matched by advancing research into all aspects of analysis and design. The Second International Conference on FRP Composites in
On March 17 1989, the Civic Tower of Pavia collapsed without apparently any warning sign, killing four people. After an experimental and analytical investigation lasted nine months, the collapse cause was found in a progressive damage dating back many years and due mainly to the heavy dead load put on top of the existing medieval tower when realising a massive bell-tower in granite. Other case histories have been collected as the collapse of the St. Marco bell-tower in Venice in 1902, of the Sancta Maria Magdalena bell-tower in 1992 in Dusseldorf, the damages of the bell-tower of the Monza Cathedral and of the Torrazzo in Cremona. Later on, in 1996 the collapse of the Noto Cathedral showed that similar progressive damages can take place in pillars of churches and cathedrals. The experimental research aimed to show the reliability of this interpretation went on and it is still continuing since 1989 and it is described in the book. After a careful interpretation of the experimental results, also based on experiences from rock mechanics and concrete, the modelling of the phenomenon for massive structures as creep behaviour of masonry was implemented. The book has the scope of helping architects and engineers to deal with the continuous damage of heavy structures and, to understand the signs of the phenomenon while proposing some modelling, but also to give guidelines for the on site investigation, monitoring and repairing of the damaged structures.