Concepts of Proof in Mathematics, Philosophy, and Computer Science

Concepts of Proof in Mathematics, Philosophy, and Computer Science

Author: Dieter Probst

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2016-07-25

Total Pages: 392

ISBN-13: 1501502646

DOWNLOAD EBOOK

A proof is a successful demonstration that a conclusion necessarily follows by logical reasoning from axioms which are considered evident for the given context and agreed upon by the community. It is this concept that sets mathematics apart from other disciplines and distinguishes it as the prototype of a deductive science. Proofs thus are utterly relevant for research, teaching and communication in mathematics and of particular interest for the philosophy of mathematics. In computer science, moreover, proofs have proved to be a rich source for already certified algorithms. This book provides the reader with a collection of articles covering relevant current research topics circled around the concept 'proof'. It tries to give due consideration to the depth and breadth of the subject by discussing its philosophical and methodological aspects, addressing foundational issues induced by Hilbert's Programme and the benefits of the arising formal notions of proof, without neglecting reasoning in natural language proofs and applications in computer science such as program extraction.


Concepts of Proof in Mathematics, Philosophy, and Computer Science

Concepts of Proof in Mathematics, Philosophy, and Computer Science

Author: Dieter Probst

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2016-07-25

Total Pages: 384

ISBN-13: 150150262X

DOWNLOAD EBOOK

A proof is a successful demonstration that a conclusion necessarily follows by logical reasoning from axioms which are considered evident for the given context and agreed upon by the community. It is this concept that sets mathematics apart from other disciplines and distinguishes it as the prototype of a deductive science. Proofs thus are utterly relevant for research, teaching and communication in mathematics and of particular interest for the philosophy of mathematics. In computer science, moreover, proofs have proved to be a rich source for already certified algorithms. This book provides the reader with a collection of articles covering relevant current research topics circled around the concept 'proof'. It tries to give due consideration to the depth and breadth of the subject by discussing its philosophical and methodological aspects, addressing foundational issues induced by Hilbert's Programme and the benefits of the arising formal notions of proof, without neglecting reasoning in natural language proofs and applications in computer science such as program extraction.


Three Views of Logic

Three Views of Logic

Author: Donald W. Loveland

Publisher: Princeton University Press

Published: 2014-01-26

Total Pages: 339

ISBN-13: 140084875X

DOWNLOAD EBOOK

The first interdisciplinary textbook to introduce students to three critical areas in applied logic Demonstrating the different roles that logic plays in the disciplines of computer science, mathematics, and philosophy, this concise undergraduate textbook covers select topics from three different areas of logic: proof theory, computability theory, and nonclassical logic. The book balances accessibility, breadth, and rigor, and is designed so that its materials will fit into a single semester. Its distinctive presentation of traditional logic material will enhance readers' capabilities and mathematical maturity. The proof theory portion presents classical propositional logic and first-order logic using a computer-oriented (resolution) formal system. Linear resolution and its connection to the programming language Prolog are also treated. The computability component offers a machine model and mathematical model for computation, proves the equivalence of the two approaches, and includes famous decision problems unsolvable by an algorithm. The section on nonclassical logic discusses the shortcomings of classical logic in its treatment of implication and an alternate approach that improves upon it: Anderson and Belnap's relevance logic. Applications are included in each section. The material on a four-valued semantics for relevance logic is presented in textbook form for the first time. Aimed at upper-level undergraduates of moderate analytical background, Three Views of Logic will be useful in a variety of classroom settings. Gives an exceptionally broad view of logic Treats traditional logic in a modern format Presents relevance logic with applications Provides an ideal text for a variety of one-semester upper-level undergraduate courses


Proofs and Algorithms

Proofs and Algorithms

Author: Gilles Dowek

Publisher: Springer Science & Business Media

Published: 2011-01-11

Total Pages: 161

ISBN-13: 0857291211

DOWNLOAD EBOOK

Logic is a branch of philosophy, mathematics and computer science. It studies the required methods to determine whether a statement is true, such as reasoning and computation. Proofs and Algorithms: Introduction to Logic and Computability is an introduction to the fundamental concepts of contemporary logic - those of a proof, a computable function, a model and a set. It presents a series of results, both positive and negative, - Church's undecidability theorem, Gödel’s incompleteness theorem, the theorem asserting the semi-decidability of provability - that have profoundly changed our vision of reasoning, computation, and finally truth itself. Designed for undergraduate students, this book presents all that philosophers, mathematicians and computer scientists should know about logic.


Mathematics for Computer Science

Mathematics for Computer Science

Author: Eric Lehman

Publisher:

Published: 2017-03-08

Total Pages: 988

ISBN-13: 9789888407064

DOWNLOAD EBOOK

This book covers elementary discrete mathematics for computer science and engineering. It emphasizes mathematical definitions and proofs as well as applicable methods. Topics include formal logic notation, proof methods; induction, well-ordering; sets, relations; elementary graph theory; integer congruences; asymptotic notation and growth of functions; permutations and combinations, counting principles; discrete probability. Further selected topics may also be covered, such as recursive definition and structural induction; state machines and invariants; recurrences; generating functions.


Mathematical Logic and Computation

Mathematical Logic and Computation

Author: Jeremy Avigad

Publisher: Cambridge University Press

Published: 2022-09-30

Total Pages: 527

ISBN-13: 1108478751

DOWNLOAD EBOOK

A thorough introduction to the fundamental methods and results in mathematical logic, and its foundational role in computer science.


Explanation and Proof in Mathematics

Explanation and Proof in Mathematics

Author: Gila Hanna

Publisher: Springer Science & Business Media

Published: 2009-12-04

Total Pages: 289

ISBN-13: 1441905766

DOWNLOAD EBOOK

In the four decades since Imre Lakatos declared mathematics a "quasi-empirical science," increasing attention has been paid to the process of proof and argumentation in the field -- a development paralleled by the rise of computer technology and the mounting interest in the logical underpinnings of mathematics. Explanantion and Proof in Mathematics assembles perspectives from mathematics education and from the philosophy and history of mathematics to strengthen mutual awareness and share recent findings and advances in their interrelated fields. With examples ranging from the geometrists of the 17th century and ancient Chinese algorithms to cognitive psychology and current educational practice, contributors explore the role of refutation in generating proofs, the varied links between experiment and deduction, the use of diagrammatic thinking in addition to pure logic, and the uses of proof in mathematics education (including a critique of "authoritative" versus "authoritarian" teaching styles). A sampling of the coverage: The conjoint origins of proof and theoretical physics in ancient Greece. Proof as bearers of mathematical knowledge. Bridging knowing and proving in mathematical reasoning. The role of mathematics in long-term cognitive development of reasoning. Proof as experiment in the work of Wittgenstein. Relationships between mathematical proof, problem-solving, and explanation. Explanation and Proof in Mathematics is certain to attract a wide range of readers, including mathematicians, mathematics education professionals, researchers, students, and philosophers and historians of mathematics.


Advances in Proof-Theoretic Semantics

Advances in Proof-Theoretic Semantics

Author: Thomas Piecha

Publisher: Springer

Published: 2015-10-24

Total Pages: 281

ISBN-13: 331922686X

DOWNLOAD EBOOK

This volume is the first ever collection devoted to the field of proof-theoretic semantics. Contributions address topics including the systematics of introduction and elimination rules and proofs of normalization, the categorial characterization of deductions, the relation between Heyting's and Gentzen's approaches to meaning, knowability paradoxes, proof-theoretic foundations of set theory, Dummett's justification of logical laws, Kreisel's theory of constructions, paradoxical reasoning, and the defence of model theory. The field of proof-theoretic semantics has existed for almost 50 years, but the term itself was proposed by Schroeder-Heister in the 1980s. Proof-theoretic semantics explains the meaning of linguistic expressions in general and of logical constants in particular in terms of the notion of proof. This volume emerges from presentations at the Second International Conference on Proof-Theoretic Semantics in Tübingen in 2013, where contributing authors were asked to provide a self-contained description and analysis of a significant research question in this area. The contributions are representative of the field and should be of interest to logicians, philosophers, and mathematicians alike.


Foundations of Abstract Mathematics

Foundations of Abstract Mathematics

Author: David C. Kurtz

Publisher: McGraw-Hill Companies

Published: 1992

Total Pages: 216

ISBN-13:

DOWNLOAD EBOOK

This text is designed for the average to strong mathematics major taking a course called Transition to Higher Mathematics, Introduction to Proofs, or Fundamentals of Mathematics. It provides a transition to topics covered in advanced mathematics and covers logic, proofs and sets and emphasizes two important mathematical activities - finding examples of objects with specified properties and writing proofs.


Proof And Computation: Digitization In Mathematics, Computer Science And Philosophy

Proof And Computation: Digitization In Mathematics, Computer Science And Philosophy

Author: Klaus Mainzer

Publisher: World Scientific

Published: 2018-05-30

Total Pages: 300

ISBN-13: 9813270950

DOWNLOAD EBOOK

This book is for graduate students and researchers, introducing modern foundational research in mathematics, computer science, and philosophy from an interdisciplinary point of view. Its scope includes Predicative Foundations, Constructive Mathematics and Type Theory, Computation in Higher Types, Extraction of Programs from Proofs, and Algorithmic Aspects in Financial Mathematics. By filling the gap between (under-)graduate level textbooks and advanced research papers, the book gives a scholarly account of recent developments and emerging branches of the aforementioned fields.