This publication gives chemists an insight into the world of chemical engineering, outlining the basic concepts and explaining the terminology of, and systems approach to, process design. It does not focus on derivation of mathematical formulae, but rather on the governing principles, explaining and demonstrating their use.
Based on a former popular course of the same title, Concepts of Chemical Engineering for Chemists outlines the basic aspects of chemical engineering for chemistry professionals. It clarifies the terminology used and explains the systems methodology approach to process design and operation for chemists with limited chemical engineering knowledge. The book provides practical insights into all areas of chemical engineering with well explained worked examples and case studies. The new edition contains a revised chapter on Process Analysis and two new chapters "Process and Personal Safety" and "Systems Integration and Experimental Design", the latter drawing together material covered in the previous chapters so that readers can design and test their own pilot process systems. This book is a guide for chemists (and other scientists) who either work alongside chemical engineers or who are undertaking chemical engineering-type projects and who wish to communicate with their colleagues and understand chemical engineering principles.
Introduction to Chemical Engineering Analysis Using Mathematica, Second Edition reviews the processes and designs used to manufacture, use, and dispose of chemical products using Mathematica, one of the most powerful mathematical software tools available for symbolic, numerical, and graphical computing. Analysis and computation are explained simultaneously. The book covers the core concepts of chemical engineering, ranging from the conservation of mass and energy to chemical kinetics. The text also shows how to use the latest version of Mathematica, from the basics of writing a few lines of code through developing entire analysis programs. This second edition has been fully revised and updated, and includes analyses of the conservation of energy, whereas the first edition focused on the conservation of mass and ordinary differential equations. - Offers a fully revised and updated new edition, extended with conservation of energy - Covers a large number of topics in chemical engineering analysis, particularly for applications to reaction systems - Includes many detailed examples - Contains updated and new worked problems at the end of the book - Written by a prominent scientist in the field
The past, present, and future of green chemistry and green engineering From college campuses to corporations, the past decade witnessed a rapidly growing interest in understanding sustainable chemistry and engineering. Green Chemistry and Engineering: A Practical Design Approach integrates the two disciplines into a single study tool for students and a practical guide for working chemists and engineers. In Green Chemistry and Engineering, the authors—each highly experienced in implementing green chemistry and engineering programs in industrial settings—provide the bottom-line thinking required to not only bring sustainable chemistry and engineering closer together, but to also move business towards more sustainable practices and products. Detailing an integrated, systems-oriented approach that bridges both chemical syntheses and manufacturing processes, this invaluable reference covers: Green chemistry and green engineering in the movement towards sustainability Designing greener, safer chemical synthesis Designing greener, safer chemical manufacturing processes Looking beyond current processes to a lifecycle thinking perspective Trends in chemical processing that may lead to more sustainable practices The authors also provide real-world examples and exercises to promote further thought and discussion. The EPA defines green chemistry as the design of chemical products and processes that reduce or eliminate the use or generation of hazardous substances. Green engineering is described as the design, commercialization, and use of products and processes that are feasible and economical while minimizing both the generation of pollution at the source and the risk to human health and the environment. While there is no shortage of books on either discipline, Green Chemistry and Engineering is the first to truly integrate the two.
This book, Chemistry and Industrial Techniques for Chemical Engineers, brings together innovative research, new concepts, and novel developments in the application of new tools for chemical and materials engineers. It contains significant research, reporting new methodologies, and important applications in the fields of chemical engineering as well as the latest coverage of chemical databases and the development of new methods and efficient approaches for chemists. With clear explanations, real-world examples, this volume emphasizes the concepts essential to the practice of chemical science, engineering, and technology while introducing the newest innovations in the field.
Completely revised, updated, and enlarged, this second edition now contains a subchapter on biorecognition assays, plus a chapter on bioprocess control added by the new co-author Jun-ichi Horiuchi, who is one of the leading experts in the field. The central theme of the textbook remains the application of chemical engineering principles to biological processes in general, demonstrating how a chemical engineer would address and solve problems. To create a logical and clear structure, the book is divided into three parts. The first deals with the basic concepts and principles of chemical engineering and can be read by those students with no prior knowledge of chemical engineering. The second part focuses on process aspects, such as heat and mass transfer, bioreactors, and separation methods. Finally, the third section describes practical aspects, including medical device production, downstream operations, and fermenter engineering. More than 40 exemplary solved exercises facilitate understanding of the complex engineering background, while self-study is supported by the inclusion of over 80 exercises at the end of each chapter, which are supplemented by the corresponding solutions. An excellent, comprehensive introduction to the principles of biochemical engineering.
As chemical companies strive to be more competitive in the world economy, it is essential that their employees, including sales and marketing personnel, as well as administrative support groups understand the basic concepts of the science upon which the industry is based. The authors, who have over 100 years of combined experience in the chemical i
This volume connects chemistry and philosophy in order to face questions raised by chemistry in our present world. The idea is first to develop a kind of philosophy of chemistry which is deeply rooted in the exploration of chemical activities. We thus work in close contact with chemists (technicians, engineers, researchers, and teachers). Following this line of reasoning, the first part of the book encourages current chemists to describe their workaday practices while insisting on the importance of attending to methodological, metrological, philosophical, and epistemological questions related to their activities. It deals with sustainable chemistry, chemical metrology, nanochemistry, and biochemistry, among other crucial topics. In doing so, those chemists invite historians and philosophers to provide ideas for future developments. In a nutshell, this part is a call for forthcoming collaborations focused on instruments and methods, that is on ways of doing chemistry. The second part of the book illustrates the multifarious ways to study chemistry and even proposes new approaches to doing so. Each approach is interesting and incomplete but the emergent whole is richer than any of its components. Analytical work needs socio-historical expertise as well as many other approaches in order to keep on investigating chemistry to greater and greater depth. This heterogeneity provides a wide set of methodological perspectives not only about current chemical practices but also about the ways to explore them philosophically. Each approach is a resource to study chemistry and to reflect upon what doing philosophy of science can mean. In the last part of the volume, philosophers and chemists propose new concepts or reshape older ones in order to think about chemistry. The act of conceptualization itself is queried as well as the relationships between concepts and chemical activities. Prefaced by Nobel Laureate in Chemistry, Roald Hoffmann, and by the President of the International Society for the Philosophy of Chemistry, Rom Harré, this volume is a plea for the emergence of a collective cleverness and aims to foster inventiveness.
This textbook, Material Balance and Process Calculations, has been carefully written to teach you important topics in material balance and process calculations by explaining them with a mindset to fully equip you in the topics. Whether you want this book for general studies of these topics or you want this book to study for an exam, you will find it a very useful tool.This textbook is a mass balance teacher which is suitable for students in universities and students in colleges. It will also serve as a useful tool for direct entry students who are preparing for entrance examinations into colleges and universities. This book is not only for engineering students but also for chemistry students or any student who is offering a course in chemistry.The step by step explanations presented in the worked examples are easy to understand since care was taken to sufficiently explain salient points and process ideas. Efforts have been made to achieve a complete and simplified explanation of every example given in this textbook. Many worked examples have been included in each topic in order to fully cover every complexity the topic might contain. This book will boost your level of understanding of material balance and process calculations. Numerous exercises at the end of each chapter are intended to test students' understanding of the topic. Therefore students are thus presented with an effective means of self-assessment whereby they can determine their individual strengths and revision needs.The topics covered in this eBook include:
Engineering requires applied science, and chemistry is the center of all science. The more chemistry an engineer understands, the more beneficial it is. In the future, global problems and issues will require an in-depth understanding of chemistry to have a global solution.This book aims at bridging the concepts and theory of chemistry with examples from fields of practical application, thus reinforcing the connection between science and engineering. It deals with the basic principles of various branches of chemistry, namely, physical chemistry, inorganic chemistry, organic chemistry, analytical chemistry, surface chemistry, biochemistry, geochemistry, fuel chemistry, polymer chemistry, cement chemistry, materials chemistry, and asphalt chemistry. Written primarily for use as a textbook for a university-level course, the topics covered here provide the fundamental tools necessary for an accomplished engineer./a