Computing education is in enormous demand. Many students (both children and adult) are realizing that they will need programming in the future. This book presents the argument that they are not all going to use programming in the same way and for the same purposes. What do we mean when we talk about teaching everyone to program? When we target a broad audience, should we have the same goals as computer science education for professional software developers? How do we design computing education that works for everyone? This book proposes use of a learner-centered design approach to create computing education for a broad audience. It considers several reasons for teaching computing to everyone and how the different reasons lead to different choices about learning goals and teaching methods. The book reviews the history of the idea that programming isn't just for the professional software developer. It uses research studies on teaching computing in liberal arts programs, to graphic designers, to high school teachers, in order to explore the idea that computer science for everyone requires us to re-think how we teach and what we teach. The conclusion describes how we might create computing education for everyone.
This book provides an overview of how to approach computer science education research from a pragmatic perspective. It represents the diversity of traditions and approaches inherent in this interdisciplinary area, while also providing a structure within which to make sense of that diversity. It provides multiple 'entry points'- to literature, to methods, to topics Part One, 'The Field and the Endeavor', frames the nature and conduct of research in computer science education. Part Two, 'Perspectives and Approaches', provides a number of grounded chapters on particular topics or themes, written by experts in each domain. These chapters cover the following topics: * design * novice misconceptions * programming environments for novices * algorithm visualisation * a schema theory view on learning to program * critical theory as a theoretical approach to computer science education research Juxtaposed and taken together, these chapters indicate just how varied the perspectives and research approaches can be. These chapters, too, act as entry points, with illustrations drawn from published work.
This special issue calls for a greater awareness of computing as a critical area of study for those interested in educational studies. Its purpose is to open up a wider dialogue about computing and education than has previously existed in the field. The questions raised provide the basis for a lively discussion and analysis of the role of educational studies in interpreting the role of computing in our culture and educational system. This issue also provides a model for exploring other topics of similar significance and importance to the field in future issues of the journal.
The growing trend for high-quality computer science in school curricula has drawn recent attention in classrooms. With an increasingly information-based and global society, computer science education coupled with computational thinking has become an integral part of an experience for all students, given that these foundational concepts and skills intersect cross-disciplinarily with a set of mental competencies that are relevant in their daily lives and work. While many agree that these concepts should be taught in schools, there are systematic inequities that exist to prevent students from accessing related computer science skills. The Handbook of Research on Equity in Computer Science in P-16 Education is a comprehensive reference book that highlights relevant issues, perspectives, and challenges in P-16 environments that relate to the inequities that students face in accessing computer science or computational thinking and examines methods for challenging these inequities in hopes of allowing all students equal opportunities for learning these skills. Additionally, it explores the challenges and policies that are created to limit access and thus reinforce systems of power and privilege. The chapters highlight issues, perspectives, and challenges faced in P-16 environments that include gender and racial imbalances, population of growing computer science teachers who are predominantly white and male, teacher preparation or lack of faculty expertise, professional development programs, and more. It is intended for teacher educators, K-12 teachers, high school counselors, college faculty in the computer science department, school administrators, curriculum and instructional designers, directors of teaching and learning centers, policymakers, researchers, and students.
This book contains a selection of contributions presenting the latest research in the field of computers in education and, more specifically, in e-Learning. It reflects the diverse scenario of the application of computers in the educational field by describing previous experiences and addressing some of the present key issues. These include issues such as Learning Management Systems as well as innovative aspects such as personalized or ubiquitous learning.
In this revolutionary book, a renowned computer scientist explains the importance of teaching children the basics of computing and how it can prepare them to succeed in the ever-evolving tech world. Computers have completely changed the way we teach children. We have Mindstorms to thank for that. In this book, pioneering computer scientist Seymour Papert uses the invention of LOGO, the first child-friendly programming language, to make the case for the value of teaching children with computers. Papert argues that children are more than capable of mastering computers, and that teaching computational processes like de-bugging in the classroom can change the way we learn everything else. He also shows that schools saturated with technology can actually improve socialization and interaction among students and between students and teachers. Technology changes every day, but the basic ways that computers can help us learn remain. For thousands of teachers and parents who have sought creative ways to help children learn with computers, Mindstorms is their bible.
As technology continues to develop and prove its importance in modern society, certain professions are acclimating. Aspects such as computer science and computational thinking are becoming essential areas of study. Implementing these subject areas into teaching practices is necessary for younger generations to adapt to the developing world. There is a critical need to examine the pedagogical implications of these technological skills and implement them into the global curriculum. The Handbook of Research on Integrating Computer Science and Computational Thinking in K-12 Education is a collection of innovative research on the methods and applications of computer science curriculum development within primary and secondary education. While highlighting topics including pedagogical implications, comprehensive techniques, and teacher preparation models, this book is ideally designed for teachers, IT consultants, curriculum developers, instructional designers, educational software developers, higher education faculty, administrators, policymakers, researchers, and graduate students.
The world is experiencing unprecedented rapidity of change, originating from pervasive technological developments. This book considers the effects of such rapid change from within computing disciplines, by allowing computing educationalists to deliver a considered verdict on the future of their discipline. The targeted future, the year 2020, was chosen to be distant enough to encourage authors to risk being visionary, while being close enough to ensure some anchorage to reality. The result is a scholarly set of contributions expressing the visions, hopes, concerns, predictions and analyses of trends for the future.
Improving Computer Science Education examines suitable theoretical frameworks for conceptualizing teaching and learning computer science. This highly useful book provides numerous examples of practical, "real world" applications of major computer science information topics, such as: • Spreadsheets • Databases • Programming Each chapter concludes with a section that summarzies recommendations for teacher professional development. Traditionally, computer science education has been skills-focused and disconnected from the reality students face after they leave the classroom. Improving Computer Science Education makes the subject matter useful and meaningful by connecting it explicitly to students' everyday lives.