Continuum Scale Simulation of Engineering Materials

Continuum Scale Simulation of Engineering Materials

Author: Dierk Raabe

Publisher: John Wiley & Sons

Published: 2006-03-06

Total Pages: 885

ISBN-13: 3527604219

DOWNLOAD EBOOK

This book fills a gap by presenting our current knowledge and understanding of continuum-based concepts behind computational methods used for microstructure and process simulation of engineering materials above the atomic scale. The volume provides an excellent overview on the different methods, comparing the different methods in terms of their respective particular weaknesses and advantages. This trains readers to identify appropriate approaches to the new challenges that emerge every day in this exciting domain. Divided into three main parts, the first is a basic overview covering fundamental key methods in the field of continuum scale materials simulation. The second one then goes on to look at applications of these methods to the prediction of microstructures, dealing with explicit simulation examples, while the third part discusses example applications in the field of process simulation. By presenting a spectrum of different computational approaches to materials, the book aims to initiate the development of corresponding virtual laboratories in the industry in which these methods are exploited. As such, it addresses graduates and undergraduates, lecturers, materials scientists and engineers, physicists, biologists, chemists, mathematicians, and mechanical engineers.


Physical Metallurgy

Physical Metallurgy

Author: David E. Laughlin

Publisher: Newnes

Published: 2014-07-24

Total Pages: 2963

ISBN-13: 0444537716

DOWNLOAD EBOOK

This fifth edition of the highly regarded family of titles that first published in 1965 is now a three-volume set and over 3,000 pages. All chapters have been revised and expanded, either by the fourth edition authors alone or jointly with new co-authors. Chapters have been added on the physical metallurgy of light alloys, the physical metallurgy of titanium alloys, atom probe field ion microscopy, computational metallurgy, and orientational imaging microscopy. The books incorporate the latest experimental research results and theoretical insights. Several thousand citations to the research and review literature are included. - Exhaustively synthesizes the pertinent, contemporary developments within physical metallurgy so scientists have authoritative information at their fingertips - Replaces existing articles and monographs with a single, complete solution - Enables metallurgists to predict changes and create novel alloys and processes


Computational Materials Science

Computational Materials Science

Author: Dierk Raabe

Publisher: Wiley-VCH

Published: 1998-10-27

Total Pages: 408

ISBN-13:

DOWNLOAD EBOOK

Modeling and simulation play an ever increasing role in the development and optimization of materials. Computational Materials Science presents the most important approaches in this new interdisciplinary field of materials science and engineering. The reader will learn to assess which numerical method is appropriate for performing simulations at the various microstructural levels and how they can be coupled. This book addresses graduate students and professionals in materials science and engineering as well as materials-oriented physicists and mechanical engineers.


Physical Metallurgy of Direct Chill Casting of Aluminum Alloys

Physical Metallurgy of Direct Chill Casting of Aluminum Alloys

Author: Dmitry G. Eskin

Publisher: CRC Press

Published: 2008-04-17

Total Pages: 324

ISBN-13: 1420062824

DOWNLOAD EBOOK

Pulling together information previously scattered throughout numerous research articles into one detailed resource, this book connects the fundamentals of structure formation during solidification with the practically observed structure and defect patterns in billets and ingots. The author examines the formation of a structure, properties, and defects in the as-cast material in tight correlation to the physical phenomena involved in the solidification and the process parameters. Compiling recent results and data, the book discusses the fundamentals of solidification together with metallurgical and technological aspects of DC casting. It gives new insight and perspective into DC casting research.


Physical Metallurgy

Physical Metallurgy

Author: Gregory N. Haidemenopoulos

Publisher: CRC Press

Published: 2018-02-07

Total Pages: 476

ISBN-13: 1351812041

DOWNLOAD EBOOK

Physical metallurgy is one of the main fields of metallurgical science dealing with the development of the microstructure of metals in order to achieve desirable properties required in technological applications. Physical Metallurgy: Principles and Design focuses on the processing–structure–properties triangle as it applies to metals and alloys. It introduces the fundamental principles of physical metallurgy and the design methodologies for alloys and processing. The first part of the book discusses the structure and change of structure through phase transformations. The latter part of the books deals with plastic deformation, strengthening mechanisms, and mechanical properties as they relate to structure. The book also includes a chapter on physical metallurgy of steels and concludes by discussing the computational tools, involving computational thermodynamics and kinetics, to perform alloy and process design.


Reviews in Computational Chemistry, Volume 17

Reviews in Computational Chemistry, Volume 17

Author: Kenny B. Lipkowitz

Publisher: John Wiley & Sons

Published: 2003-05-08

Total Pages: 431

ISBN-13: 0471458813

DOWNLOAD EBOOK

Computational chemistry is increasingly used in most areas of molecular science including organic, inorganic, medicinal, biological, physical, and analytical chemistry. Researchers in these fields who do molecular modelling need to understand and stay current with recent developments. This volume, like those prior to it, features chapters by experts in various fields of computational chemistry. Two chapters focus on molecular docking, one of which relates to drug discovery and cheminformatics and the other to proteomics. In addition, this volume contains tutorials on spin-orbit coupling and cellular automata modeling, as well as an extensive bibliography of computational chemistry books. FROM REVIEWS OF THE SERIES "Reviews in Computational Chemistry remains the most valuable reference to methods and techniques in computational chemistry."—JOURNAL OF MOLECULAR GRAPHICS AND MODELLING "One cannot generally do better than to try to find an appropriate article in the highly successful Reviews in Computational Chemistry. The basic philosophy of the editors seems to be to help the authors produce chapters that are complete, accurate, clear, and accessible to experimentalists (in particular) and other nonspecialists (in general)."—JOURNAL OF THE AMERICAN CHEMICAL SOCIETY


Modelling of Metal Forming Processes

Modelling of Metal Forming Processes

Author: J.L. Chenot

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 343

ISBN-13: 9400914113

DOWNLOAD EBOOK

The physical modelling of metal forming processes has been widely used both in University and in Industry for many years. Relatively simple numerical models, such as the Slab Method and the Upper Bound Method, were first used and many such models are implemented in the industry for practical design or regulation of forming processes. These are also under investigation in the University, mainly for treat models ments which require low cost calculations or very fast answers for on-line integration. More recently, sophisticated numerical methods have been used for the simulation of metal flow during forming operations. Since the early works in 1973 and 1974, mainly in U. K. and U. S. A. , the applications of the finite element method to metal processing have been developed in many laboratories all over the world. Now the numerical approach seems to be widely re cognized as a powerful tool for comprehension oriented studies, for predic ting the main technological parameters, and for the design and the optlmi zation of new forming sequences. There is also a very recent trend for the introduction of physical laws in the thermo-mechanical models, in order to predict the local evolution of internal variable representing the micro structure of the metal. To day more and more practicians of the Industry are asking for compu ter models for design of their forming processes.