Computer Simulation in Chemical Physics

Computer Simulation in Chemical Physics

Author: M. P. Allen

Publisher: Springer Science & Business Media

Published: 1993

Total Pages: 538

ISBN-13: 9780792322832

DOWNLOAD EBOOK

Proceedings of a NATO ASI held near Alghero, Italy in September 1992. The school focused on recent progress in applying the methods of computer simulation to problems in chemical physics. The 14 lectures address topics including the molecular dynamics method, advanced Monte Carlo techniques, thermodynamic constraints, computer simulations in the Gibbs ensemble, effective pair potentials and beyond, first principles molecular dynamics, computer simulation methods for nonadiabatic dynamics in condensed systems, long length- scale aspects of self organization phenomena, computer simulation of polymers, computer simulation of surfactants, parallel computing and molecular dynamics simulations, and scientific visualization--a user view. Annotation copyright by Book News, Inc., Portland, OR


Computer Simulation in Chemical Physics

Computer Simulation in Chemical Physics

Author: M.P. Allen

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 522

ISBN-13: 9401116792

DOWNLOAD EBOOK

Computer Simulation in Chemical Physics contains the proceedings of a NATO Advanced Study Institute held at CORISA, Alghero, Sardinia, in September 1992. In the five years that have elapsed since the field was last summarized there have been a number of remarkable advances which have significantly expanded the scope of the methods. Good examples are the Car--Parrinello method, which allows the study of materials with itinerant electrons; the Gibbs technique for the direct simulation of liquid--vapor phase equilibria; the transfer of scaling concepts from simulations of spin models to more complex systems; and the development of the configurational--biased Monte-Carlo methods for studying dense polymers. The field has also been stimulated by an enormous increase in available computing power and the provision of new software. All these exciting developments, an more, are discussed in an accessible way here, making the book indispensable reading for graduate students and research scientists in both academic and industrial settings.


Computer Simulation in Physics and Engineering

Computer Simulation in Physics and Engineering

Author: Martin Oliver Steinhauser

Publisher: Walter de Gruyter

Published: 2012-12-06

Total Pages: 532

ISBN-13: 3110256061

DOWNLOAD EBOOK

This work is a needed reference for widely used techniques and methods of computer simulation in physics and other disciplines, such as materials science. Molecular dynamics computes a molecule's reactions and dynamics based on physical models; Monte Carlo uses random numbers to image a system's behaviour when there are different possible outcomes with related probabilities. The work conveys both the theoretical foundations as well as applications and "tricks of the trade", that often are scattered across various papers. Thus it will meet a need and fill a gap for every scientist who needs computer simulations for his/her task at hand. In addition to being a reference, case studies and exercises for use as course reading are included.


Understanding Molecular Simulation

Understanding Molecular Simulation

Author: Daan Frenkel

Publisher: Elsevier

Published: 2001-10-19

Total Pages: 661

ISBN-13: 0080519989

DOWNLOAD EBOOK

Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the "recipes" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique for a given application. A wide variety of tools exist, so the choice of technique requires a good understanding of the basic principles. More importantly, such understanding may greatly improve the efficiency of a simulation program. The implementation of simulation methods is illustrated in pseudocodes and their practical use in the case studies used in the text. Since the first edition only five years ago, the simulation world has changed significantly -- current techniques have matured and new ones have appeared. This new edition deals with these new developments; in particular, there are sections on: - Transition path sampling and diffusive barrier crossing to simulaterare events - Dissipative particle dynamic as a course-grained simulation technique - Novel schemes to compute the long-ranged forces - Hamiltonian and non-Hamiltonian dynamics in the context constant-temperature and constant-pressure molecular dynamics simulations - Multiple-time step algorithms as an alternative for constraints - Defects in solids - The pruned-enriched Rosenbluth sampling, recoil-growth, and concerted rotations for complex molecules - Parallel tempering for glassy Hamiltonians Examples are included that highlight current applications and the codes of case studies are available on the World Wide Web. Several new examples have been added since the first edition to illustrate recent applications. Questions are included in this new edition. No prior knowledge of computer simulation is assumed.


Beyond the Molecular Frontier

Beyond the Molecular Frontier

Author: National Research Council

Publisher: National Academies Press

Published: 2003-03-19

Total Pages: 238

ISBN-13: 0309168392

DOWNLOAD EBOOK

Chemistry and chemical engineering have changed significantly in the last decade. They have broadened their scopeâ€"into biology, nanotechnology, materials science, computation, and advanced methods of process systems engineering and controlâ€"so much that the programs in most chemistry and chemical engineering departments now barely resemble the classical notion of chemistry. Beyond the Molecular Frontier brings together research, discovery, and invention across the entire spectrum of the chemical sciencesâ€"from fundamental, molecular-level chemistry to large-scale chemical processing technology. This reflects the way the field has evolved, the synergy at universities between research and education in chemistry and chemical engineering, and the way chemists and chemical engineers work together in industry. The astonishing developments in science and engineering during the 20th century have made it possible to dream of new goals that might previously have been considered unthinkable. This book identifies the key opportunities and challenges for the chemical sciences, from basic research to societal needs and from terrorism defense to environmental protection, and it looks at the ways in which chemists and chemical engineers can work together to contribute to an improved future.


Computer Simulation of Liquids

Computer Simulation of Liquids

Author: M. P. Allen

Publisher: Oxford University Press

Published: 1989

Total Pages: 412

ISBN-13: 9780198556459

DOWNLOAD EBOOK

Computer simulation is an essential tool in studying the chemistry and physics of liquids. Simulations allow us to develop models and to test them against experimental data. This book is an introduction and practical guide to the molecular dynamics and Monte Carlo methods.


Statistical Mechanics: Theory and Molecular Simulation

Statistical Mechanics: Theory and Molecular Simulation

Author: Mark Tuckerman

Publisher: OUP Oxford

Published: 2010-02-11

Total Pages: 719

ISBN-13: 0191523461

DOWNLOAD EBOOK

Complex systems that bridge the traditional disciplines of physics, chemistry, biology, and materials science can be studied at an unprecedented level of detail using increasingly sophisticated theoretical methodology and high-speed computers. The aim of this book is to prepare burgeoning users and developers to become active participants in this exciting and rapidly advancing research area by uniting for the first time, in one monograph, the basic concepts of equilibrium and time-dependent statistical mechanics with the modern techniques used to solve the complex problems that arise in real-world applications. The book contains a detailed review of classical and quantum mechanics, in-depth discussions of the most commonly used ensembles simultaneously with modern computational techniques such as molecular dynamics and Monte Carlo, and important topics including free-energy calculations, linear-response theory, harmonic baths and the generalized Langevin equation, critical phenomena, and advanced conformational sampling methods. Burgeoning users and developers are thus provided firm grounding to become active participants in this exciting and rapidly advancing research area, while experienced practitioners will find the book to be a useful reference tool for the field.


Computer Simulation of Biomolecular Systems

Computer Simulation of Biomolecular Systems

Author: W.F. van Gunsteren

Publisher: Springer Science & Business Media

Published: 1997-11-30

Total Pages: 664

ISBN-13: 9789072199256

DOWNLOAD EBOOK

This book is the third volume in this highly successful series. Since the first volume in 1989 and the second in 1993, many exciting developments have occurred in the development of simulation techniques and their application to key biological problems such as protein folding, protein structure prediction and structure-based design, and in how, by combining experimental and theoretical approaches, very large biological systems can be studied at the molecular level. This series attempts to capture that progress. Volume 3 includes contributions that highlight developments in methodology which enable longer and more realistic simulations (e.g. multiple time steps and variable reduction techniques), a study of force fields for proteins and new force field development, a novel approach to the description of molecular shape and the use of molecular shape descriptors, the study of condensed phase chemical reactions, the use of electrostatic techniques in the study of protonation, equilibria and flexible docking studies, structure refinement using experimental data (X-ray, NMR, neutron, infrared) and theoretical methods (solvation models, normal mode analysis, MD simulations, MC lattice dynamics, and knowledge-based potentials). There are several chapters that show progress in the development of methodologies for the study of folding processes, binding affinities, and the prediction of ligand-protein complexes. The chapters, contributed by experienced researchers, many of whom are leaders in their field of study, are organised to cover developments in: simulation methodology the treatment of electrostatics protein structure refinement the combined experimental and theoretical approaches to the study of very large biological systems applications and methodology involved in the study of protein folding applications and methodology associated with structure-based design.


Mathematical Modeling and Numerical Methods in Chemical Physics and Mechanics

Mathematical Modeling and Numerical Methods in Chemical Physics and Mechanics

Author: Ali V. Aliev

Publisher: CRC Press

Published: 2016-04-27

Total Pages: 564

ISBN-13: 1771882905

DOWNLOAD EBOOK

The use of mathematical modeling in engineering allows for a significant reduction of material costs associated with design, production, and operation of technical objects, but it is important for an engineer to use the available computational approaches in modeling correctly. Taking into account the level of modern computer technology, this new vo