Computer Programming and Formal Systems
Author: P Braffort
Publisher:
Published: 1963
Total Pages: 180
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: P Braffort
Publisher:
Published: 1963
Total Pages: 180
ISBN-13:
DOWNLOAD EBOOKAuthor: Lev D. Beklemishev
Publisher: Elsevier
Published: 2000-04-01
Total Pages: 160
ISBN-13: 9780080957463
DOWNLOAD EBOOKProvability, Computability and Reflection
Author: Glynn Winskel
Publisher: MIT Press
Published: 1993-02-05
Total Pages: 388
ISBN-13: 9780262731034
DOWNLOAD EBOOKThe Formal Semantics of Programming Languages provides the basic mathematical techniques necessary for those who are beginning a study of the semantics and logics of programming languages. These techniques will allow students to invent, formalize, and justify rules with which to reason about a variety of programming languages. Although the treatment is elementary, several of the topics covered are drawn from recent research, including the vital area of concurency. The book contains many exercises ranging from simple to miniprojects.Starting with basic set theory, structural operational semantics is introduced as a way to define the meaning of programming languages along with associated proof techniques. Denotational and axiomatic semantics are illustrated on a simple language of while-programs, and fall proofs are given of the equivalence of the operational and denotational semantics and soundness and relative completeness of the axiomatic semantics. A proof of Godel's incompleteness theorem, which emphasizes the impossibility of achieving a fully complete axiomatic semantics, is included. It is supported by an appendix providing an introduction to the theory of computability based on while-programs. Following a presentation of domain theory, the semantics and methods of proof for several functional languages are treated. The simplest language is that of recursion equations with both call-by-value and call-by-name evaluation. This work is extended to lan guages with higher and recursive types, including a treatment of the eager and lazy lambda-calculi. Throughout, the relationship between denotational and operational semantics is stressed, and the proofs of the correspondence between the operation and denotational semantics are provided. The treatment of recursive types - one of the more advanced parts of the book - relies on the use of information systems to represent domains. The book concludes with a chapter on parallel programming languages, accompanied by a discussion of methods for specifying and verifying nondeterministic and parallel programs.
Author: Markus Roggenbach
Publisher: Springer Nature
Published: 2022-06-22
Total Pages: 538
ISBN-13: 303038800X
DOWNLOAD EBOOKSoftware programs are formal entities with precise meanings independent of their programmers, so the transition from ideas to programs necessarily involves a formalisation at some point. The first part of this graduate-level introduction to formal methods develops an understanding of what constitutes formal methods and what their place is in Software Engineering. It also introduces logics as languages to describe reasoning and the process algebra CSP as a language to represent behaviours. The second part offers specification and testing methods for formal development of software, based on the modelling languages CASL and UML. The third part takes the reader into the application domains of normative documents, human machine interfaces, and security. Use of notations and formalisms is uniform throughout the book. Topics and features: Explains foundations, and introduces specification, verification, and testing methods Explores various application domains Presents realistic and practical examples, illustrating concepts Brings together contributions from highly experienced educators and researchers Offers modelling and analysis methods for formal development of software Suitable for graduate and undergraduate courses in software engineering, this uniquely practical textbook will also be of value to students in informatics, as well as to scientists and practical engineers, who want to learn about or work more effectively with formal theories and methods. Markus Roggenbach is a Professor in the Dept. of Computer Science of Swansea University. Antonio Cerone is an Associate Professor in the Dept. of Computer Science of Nazarbayev University, Nur-Sultan. Bernd-Holger Schlingloff is a Professor in the Institut für Informatik of Humboldt-Universität zu Berlin. Gerardo Schneider is a Professor in the Dept. of Computer Science and Engineering of University of Gothenburg. Siraj Ahmed Shaikh is a Professor in the Institute for Future Transport and Cities of Coventry University. The companion site for the book offers additional resources, including further material for selected chapters, prepared lab classes, a list of errata, slides and teaching material, and virtual machines with preinstalled tools and resources for hands-on experience with examples from the book. The URL is: https://sefm-book.github.io
Author: Shaoying Liu
Publisher: Springer Science & Business Media
Published: 2013-03-09
Total Pages: 410
ISBN-13: 3662072874
DOWNLOAD EBOOKIn any serious engineering discipline, it would be unthinkable to construct a large system without having a precise notion of what is to be built and without verifying how the system is expected to function. Software engineering is no different in this respect. Formal methods involve the use of mathematical notation and calculus in software development; such methods are difficult to apply to large-scale systems with practical constraints (e.g., limited developer skills, time and budget restrictions, changing requirements). Here Liu claims that formal engineering methods may bridge this gap. He advocates the incorporation of mathematical notation into the software engineering process, thus substantially improving the rigor, comprehensibility and effectiveness of the methods commonly used in industry. This book provides an introduction to the SOFL (Structured Object-Oriented Formal Language) method that was designed and industry-tested by the author. Written in a style suitable for lecture courses or for use by professionals, there are numerous exercises and a significant real-world case study, so the readers are provided with all the knowledge and examples needed to successfully apply the method in their own projects.
Author: Michael Huth
Publisher:
Published: 2004-08-26
Total Pages: 427
ISBN-13: 9780521543101
DOWNLOAD EBOOKProvides a sound basis in logic, and introduces logical frameworks used in modelling, specifying and verifying computer systems.
Author: Donald Sannella
Publisher: Springer Science & Business Media
Published: 2012-01-05
Total Pages: 594
ISBN-13: 3642173365
DOWNLOAD EBOOKThis book provides foundations for software specification and formal software development from the perspective of work on algebraic specification, concentrating on developing basic concepts and studying their fundamental properties. These foundations are built on a solid mathematical basis, using elements of universal algebra, category theory and logic, and this mathematical toolbox provides a convenient language for precisely formulating the concepts involved in software specification and development. Once formally defined, these notions become subject to mathematical investigation, and this interplay between mathematics and software engineering yields results that are mathematically interesting, conceptually revealing, and practically useful. The theory presented by the authors has its origins in work on algebraic specifications that started in the early 1970s, and their treatment is comprehensive. This book contains five kinds of material: the requisite mathematical foundations; traditional algebraic specifications; elements of the theory of institutions; formal specification and development; and proof methods. While the book is self-contained, mathematical maturity and familiarity with the problems of software engineering is required; and in the examples that directly relate to programming, the authors assume acquaintance with the concepts of functional programming. The book will be of value to researchers and advanced graduate students in the areas of programming and theoretical computer science.
Author: Adam Chlipala
Publisher: MIT Press
Published: 2013-12-06
Total Pages: 437
ISBN-13: 0262317885
DOWNLOAD EBOOKA handbook to the Coq software for writing and checking mathematical proofs, with a practical engineering focus. The technology of mechanized program verification can play a supporting role in many kinds of research projects in computer science, and related tools for formal proof-checking are seeing increasing adoption in mathematics and engineering. This book provides an introduction to the Coq software for writing and checking mathematical proofs. It takes a practical engineering focus throughout, emphasizing techniques that will help users to build, understand, and maintain large Coq developments and minimize the cost of code change over time. Two topics, rarely discussed elsewhere, are covered in detail: effective dependently typed programming (making productive use of a feature at the heart of the Coq system) and construction of domain-specific proof tactics. Almost every subject covered is also relevant to interactive computer theorem proving in general, not just program verification, demonstrated through examples of verified programs applied in many different sorts of formalizations. The book develops a unique automated proof style and applies it throughout; even experienced Coq users may benefit from reading about basic Coq concepts from this novel perspective. The book also offers a library of tactics, or programs that find proofs, designed for use with examples in the book. Readers will acquire the necessary skills to reimplement these tactics in other settings by the end of the book. All of the code appearing in the book is freely available online.
Author: Dale Miller
Publisher: Cambridge University Press
Published: 2012-06-11
Total Pages: 321
ISBN-13: 1139510428
DOWNLOAD EBOOKFormal systems that describe computations over syntactic structures occur frequently in computer science. Logic programming provides a natural framework for encoding and animating such systems. However, these systems often embody variable binding, a notion that must be treated carefully at a computational level. This book aims to show that a programming language based on a simply typed version of higher-order logic provides an elegant, declarative means for providing such a treatment. Three broad topics are covered in pursuit of this goal. First, a proof-theoretic framework that supports a general view of logic programming is identified. Second, an actual language called λProlog is developed by applying this view to higher-order logic. Finally, a methodology for programming with specifications is exposed by showing how several computations over formal objects such as logical formulas, functional programs, and λ-terms and π-calculus expressions can be encoded in λProlog.
Author: Robert Sedgewick
Publisher: Addison-Wesley Professional
Published: 2001
Total Pages: 702
ISBN-13: 9780201756081
DOWNLOAD EBOOKThis text aims to provide an introduction to graph algorithms and data structures and an understanding of the basic properties of a broad range of fundamental graph algorithms. It is suitable for anyone with some basic programming concepts. It covers graph properties and types, graph search, directed graphs, minimal spanning trees, shortest paths, and networks.